Featured Research

from universities, journals, and other organizations

Chain reaction in the human immune system trapped in crystals

Date:
September 11, 2012
Source:
Aarhus University
Summary:
Medical researchers have revealed details of how a chain reaction in the human immune system starts. With these results, the researchers hope to promote the development of strategies aimed at alleviating suffering caused by unintentional activation of the immune system.

Atomic model of the complement protein C4 (brown) trapped in the complex with the protein-degrading enzyme MASP-2 (blue). The model shows how the MASP-2 attaches itself to the C4, which allows the MASP-2 to cleave a small portion of the C4. This makes the structure of C4 change, which enables the C4 to bind to the surface of pathogenic microorganisms, for example, or our own dying cells.
Credit: Rune T. Kidmose

A research team from Aarhus University has revealed details of how a chain reaction in the human immune system starts. With these results, the researchers hope to promote the development of strategies aimed at alleviating suffering caused by unintentional activation of the immune system.

Related Articles


The complement system is part of the innate immune system and is composed of about 40 different proteins that work together to defend the body against disease-causing microorganisms. The complement system perceives danger signals in the body by recognising characteristic molecular patterns presented by pathogenic microorganisms or some of our own sick or dying cells that must be eliminated.

The complement system can be found in the blood, but also in the fluid surrounding the cells in tissues. Complement serves as the first line of defence against many pathogenic organisms, and its recognition of danger signals is handled by specialised proteins in the complement system.

For more than 20 years, Professor Steffen Thiel at the Department of Biomedicine, Aarhus University, has been a world leader in studies of MBL and MASP-2, which are two key proteins in the complement system. When MBL recognises the danger signal, MASP-2 is converted into an active enzyme that can now cleave the protein C4, a third important protein in the complement system. This cleavage is the first step in a chain reaction that ends with the elimination of pathogenic bacteria and dying cells. A research team led by Associate Professor Gregers R. Andersen at the Department of Molecular Biology and Genetics, Aarhus University, has now -- in collaboration with Professor Thiel -- succeeded in determining in atomic detail how the active enzyme MASP-2 recognises the substrate C4.

Crystals shot with X-rays

Two PhD students in molecular biology, Rune T. Kidmose and Nick S. Laursen, isolated the protein C4 from blood plasma, whereas they obtained the MASP-2 from Hungarian colleagues. They then crystallised the substrate C4 alone, but -- to their surprise -- they could also crystallise the enzyme-substrate complex C4·MASP-2. By exposing the resulting crystals to intense X-ray radiation, the two students managed within a year to determine the atomic structures of the C4 protein and the C4·MASP-2 complex. Two other PhD students, Sofia Sirotkina and Troels R. Kjaer, then performed laboratory experiments showing that the conclusions based on crystal structures were also valid when MASP-2 cleaved C4 in a test tube.

Potential impact on drug development

The results obtained by Rune T. Kidmose and Nick S. Laursen are remarkable. "It's extremely rare that you can trap a proteolytic (protein-degrading) enzyme in the middle of the process of cleaving an intact protein," says Associate Professor Gregers Rom Andersen, the students' supervisor. "We now know in detail which parts of MASP-2 recognise the substrate C4. Another fascinating aspect of their results is that we also know the structure of both C4 and MASP-2 alone, so we can see how both the enzyme and the substrate change their three-dimensional structure when C4 is recognised by MASP-2. We can also see how these changes directly contribute to facilitating the cleavage of C4," he concludes.

For Professor Thiel, the new results represent a completely new way to visualise how MASP-2 -- whose function he discovered in 1997 -- carries out its function. "It's also a great personal pleasure to be involved right from the discovery of a new protein to the point where you obtain knowledge at the atomic level on how this protein functions as an enzyme," he says.

In many situations, an undesirable activation of the complement system takes place, which can damage our own tissues. Several pharmaceutical companies are currently working on developing drugs that can attenuate such damage. "The very detailed understanding that we now have concerning parts of the complement system will undoubtedly lead to more intelligent ways of developing new drugs," says Professor Thiel. "Of course, we won't stop our studies here, as we'll continue the very detailed studies of other proteins and molecular mechanisms within the immune system," he continues.


Story Source:

The above story is based on materials provided by Aarhus University. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. T. Kidmose, N. S. Laursen, J. Dobo, T. R. Kjaer, S. Sirotkina, L. Yatime, L. Sottrup-Jensen, S. Thiel, P. Gal, G. R. Andersen. Structural basis for activation of the complement system by component C4 cleavage. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1208031109

Cite This Page:

Aarhus University. "Chain reaction in the human immune system trapped in crystals." ScienceDaily. ScienceDaily, 11 September 2012. <www.sciencedaily.com/releases/2012/09/120911103406.htm>.
Aarhus University. (2012, September 11). Chain reaction in the human immune system trapped in crystals. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/09/120911103406.htm
Aarhus University. "Chain reaction in the human immune system trapped in crystals." ScienceDaily. www.sciencedaily.com/releases/2012/09/120911103406.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins