Featured Research

from universities, journals, and other organizations

Shattering glass cookware: New paper addresses causes; Margin of safety described as 'borderline'

Date:
September 12, 2012
Source:
The American Ceramic Society
Summary:
In response to reports of explosive-like glass cookware failures, researchers applied basic materials engineering concepts to identify the causes. They found that current glass cookware sold in the United States is made of soda lime silicate glass rather than borosilcate glass used in the original Pyrex composition. They found that the soda lime silicate glass is much more susceptible to failure due to rapid temperature changes than borosilicate glass.

A reconstructed fractured soda lime silicate Pyrex bowl. Arrows outline crack paths.
Credit: Photograph courtesy of G. Quinn

A new paper appearing in the September 2012 edition of the Bulletin of The American Ceramic Society for the first time provides a scientific explanation of why some glass cookware sold in the United States is more susceptible than others to "explosive" shattering and the possibility of exposing consumers to injury from flying glass shards.

Clear glass baking dishes and pots are a staple in many households around the world and have been since they were first introduced in 1915 to consumers by the Corning Glass Works, which created the Pyrex brand name. The original Pyrex cookware was made of a specific, thermally strong composition known as borosilicate glass. The durability of this glass, originally advertised as an "oven to icebox" and "icebox to oven" product, was startling at first, but eventually became taken for granted by generations of consumers who often passed on the rugged vessels to family members and friends. In later years, Corning competitors, and eventually Corning, itself, substituted a different glass composition-soda lime silicate glass-for the borosilicate Pyrex cookware.

Corning exited the Pyrex cookware manufacturing business in the late 1990s, and currently licenses the use of the Pyrex brand name to World Kitchen LLC for sale in the United States. The other main competitor in this field is Anchor Hocking Glass Co., which has made a similar looking soda lime silicate glass product for over 60 years. Both World Kitchen and Anchor Hocking now use the soda lime silicate glass instead of the original Pyrex borosilicate glass composition.

R.C. Bradt and R.L. Martens, the authors of "Shattering Glass Cookware," became interested in the topic after hearing anecdotal reports of glass cookware shattering and reading reports of cookware failure and related injuries in publications such as the January and October 2011 issues of Consumer Reports. Consumer Reports and others documented that the explosion-like glassware failures seemed to be linked to rapid changes in temperature, such as when the cookware was removed from the oven and placed on a counter or dinner table. The publication also noted that virtually all of the reports of glassware failure involved vessels made of the soda lime silicate glass. In contrast, the magazine reports that there are no reports in Europe of explosive cookware failure, a region where nearly all of the products sold are composed of the authentic borosilicate glass (manufactured and marketed by a separate company, Arc International).

Bradt, a professor of materials engineering (emeritus) at the University of Alabama and Martens, manager of the university's Central Analytical Facility, sought to make sense of why the soda lime silicate glassware is prone to thermal stress failure. Bradt and Martens applied basic materials engineering concepts-such as thermal stress, elastic modulus, thermal shock and temperature differentials-to the borosilicate and soda lime glasses.

Their investigation confirmed the borosilicate glass would withstand a much larger rapid temperature change. According to their calculation and those of others, soda lime glass cookware shatters more frequently because, in theory, it can only resist fracture stress for temperature differentials less than about 55C (99F). In contrast, they estimate that the borosilicate glassware could tolerate a temperature differential of about 183C (330F), a three-fold difference.

Bradt and Marten do note that all manufacturers of glass cookware warn consumers against placing hot vessels directly on a countertop or a moisture-containing surface as a precaution against rapid temperature changes that could trigger the explosive-like shattering. Practically speaking, however, the authors also note that a typical kitchen might easily be an environment for glassware failure. "From the perspective of kitchen applications, a good calibration point is that of boiling water 100C (212F)," write Bradt and Martin. "None of [our] calculations suggest the soda lime silicate glass would be likely to survive a rapid exposure to boiling water."

Bradt and Martens also investigated manufacturers' claims that they use heat strengthening or thermal tempering processes to increase the soda lime silicate cookware's resistance to thermal stress fracture and, should breakage occur, encourage the formation of small glass "dice" instead of sharp glass shards. After using a variety of methods, including fracture and fringe pattern analysis, Bradt and Martens say they found some evidence of heat treatment, but warn the treatment "does not appear to be sufficient to increase substantially the thermal stress fracture resistance of the cookware, nor is it sufficient to create a desirable dicing fracture pattern for the glass cookware."

Bradt and Martens emphasize that consumers should read and follow the warnings contained in the glass cookware packaging. However, based on their research, they conclude by warning, "the margin of safety for avoiding thermal stress failures of soda lime silicate cookware is borderline. It does not appear to be adequate for all household cooking."

The story, "Shattering Glass Cookware," is available online (http://americanceramicsociety.org/bulletin/2012_pdf_files/sept_12/#/35/)


Story Source:

The above story is based on materials provided by The American Ceramic Society. Note: Materials may be edited for content and length.


Cite This Page:

The American Ceramic Society. "Shattering glass cookware: New paper addresses causes; Margin of safety described as 'borderline'." ScienceDaily. ScienceDaily, 12 September 2012. <www.sciencedaily.com/releases/2012/09/120912093823.htm>.
The American Ceramic Society. (2012, September 12). Shattering glass cookware: New paper addresses causes; Margin of safety described as 'borderline'. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/09/120912093823.htm
The American Ceramic Society. "Shattering glass cookware: New paper addresses causes; Margin of safety described as 'borderline'." ScienceDaily. www.sciencedaily.com/releases/2012/09/120912093823.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins