Featured Research

from universities, journals, and other organizations

New research could provide new insights into tuberculosis and other diseases

Date:
September 18, 2012
Source:
University of Notre Dame
Summary:
Scientists have developed a method to directly detect bacterial protein secretion, which could provide new insights into a variety of diseases including tuberculosis.

Researchers Patricia A. Champion and Matthew Champion from the University of Notre Dame's Eck Institute for Global Health have developed a method to directly detect bacterial protein secretion, which could provide new insights into a variety of diseases including tuberculosis.

The Champions point out that bacteria use a variety of secretion systems to transport proteins beyond their cell membranes in order to interact with their environment. For bacterial pathogens such as TB, these systems transport bacterial proteins that promote interaction with host cells, leading to virulent disease.

Previously, researchers have relied on methods that have fused enzymes or fluorescent markers to bacterial proteins to identify bacterial genes that are used to export bacterial proteins into host cells. However, these methods can't be used in the analysis of all bacterial secretion systems, which has limited understanding of the mechanisms that bacteria use to interact with host cells.

The Champions developed a modified form of bacterial proteomics using a MALDI-TOF mass spectrometer, which directly detects the proteins from whole colonies by ionizing them with a laser. This research revealed that the method was able to specifically monitor a specialized form of protein secretion, which is a major virulence determinant in both mycobacterial pathogens, such as TB, and Gram-positive pathogens, such as Bacillus and Staphylococcus species.

The Champions demonstrated that this new method is applicable to the study of other bacterial protein export systems that could not be effectively studied under previous methods. Their method could also help in the identification of compounds that can inhibit bacterial protein secretion.

The method's importance can be seen in the fact that there are approximately 2 million fatal TB cases each year, mostly in the developing world. Also, antibiotic-resistant strains of TB are appearing increasingly.

The Champions' research findings appeared in the journal Molecular and Cellular Proteomics. The research was funded by the National Institutes of Health and Notre Dame's Center for Rare and Neglected Diseases as well as capitalization funds from Notre Dame.


Story Source:

The above story is based on materials provided by University of Notre Dame. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. M. Champion, E. A. Williams, G. M. Kennedy, P. A. DiGiuseppe Champion. Direct Detection of Bacterial Protein Secretion Using Whole Colony Proteomics. Molecular & Cellular Proteomics, 2012; 11 (9): 596 DOI: 10.1074/mcp.M112.017533

Cite This Page:

University of Notre Dame. "New research could provide new insights into tuberculosis and other diseases." ScienceDaily. ScienceDaily, 18 September 2012. <www.sciencedaily.com/releases/2012/09/120918150053.htm>.
University of Notre Dame. (2012, September 18). New research could provide new insights into tuberculosis and other diseases. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2012/09/120918150053.htm
University of Notre Dame. "New research could provide new insights into tuberculosis and other diseases." ScienceDaily. www.sciencedaily.com/releases/2012/09/120918150053.htm (accessed April 25, 2014).

Share This



More Health & Medicine News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Companies Ramp Up Wellness to Lower Health Costs

Companies Ramp Up Wellness to Lower Health Costs

AP (Apr. 24, 2014) That little voice telling you to exercise, get in shape and get healthy is probably coming from your boss. More companies are beefing up wellness programs to try and cut down their health care costs. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
FDA Wants To Ban Sales Of E-Cigarettes To Minors

FDA Wants To Ban Sales Of E-Cigarettes To Minors

Newsy (Apr. 24, 2014) The Food and Drug Administration wants to crack down on the use of e-cigarettes, banning the sale of the product to minors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins