Featured Research

from universities, journals, and other organizations

Research gives insight into graphene-metal junctions

Date:
September 18, 2012
Source:
University of Arkansas, Fayetteville
Summary:
Researchers have developed a better understanding of how these graphene-metal interfaces affect the movement of electrons through two-terminal junctions.

Graphene, an atom-thin layer of pure carbon, appears to have many of the properties needed to usher in the next generation of electronic devices. The next step in building those devices, however, requires creating junctions that connect graphene to the "external world" through at least two metal wires. A "two-terminal junction" is a graphene "ribbon" with two metal contacts. A University of Arkansas researcher and his colleagues have developed a better understanding of how these graphene-metal interfaces affect the movement of electrons through two-terminal junctions.

Related Articles


Salvador Barraza-Lopez, assistant professor of physics, Markus Kindermann of Georgia Institute of Technology and M.Y. Chou of Georgia Tech and the Academia Sinica in Taiepi, Taiwan, report their findings in the journal Nano Letters.

"If you want to use graphene for devices, you want to understand what will happen with metal contacts," Barraza-Lopez said.

Current theories about graphene devices assume that the contacts that move electricity from one point to another will also be composed of "doped" graphene, meaning that the contacts have a large amount of electronic charge, as actual metals would have. But contacts in real devices are made of transition metals, and those metal contacts will form bonds with graphene.

"When you form covalent bonds, you destroy the unique electronic properties of graphene," Barraza-Lopez said. "So we thought it was important to calculate the transport of electrons going beyond the assumption that the contacts themselves are (doped) graphene."

He and his colleagues set out to look at how electrons can move through graphene junctions with titanium, which is used by many experimental teams as a contact with graphene: they considered the material properties of actual junctions, and contrasted their findings with more basic models already available. Their calculations were done using the principles of quantum mechanics and state-of-the-art computational facilities.

Within quantum mechanics, the electrons at these graphene-metal junctions behave much like a light beam does when it is shone on a crystal -- some of the light scatters and some of it goes through. For graphene junctions the electronic transparency of the material indicates how many of the electrons on one contact make it through the other metal contact. In this work, the researchers have provided the most accurate calculations of the electronic transparency of realistic graphene-metal junctions to date.

"Our results shed light on the complex behavior of graphene junctions … and pave the way for realistic design of potential electronic devices," the researchers wrote.


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Journal Reference:

  1. Salvador Barraza-Lopez, Markus Kindermann, M. Y. Chou. Charge Transport through Graphene Junctions with Wetting Metal Leads. Nano Letters, 2012; 12 (7): 3424 DOI: 10.1021/nl3004122

Cite This Page:

University of Arkansas, Fayetteville. "Research gives insight into graphene-metal junctions." ScienceDaily. ScienceDaily, 18 September 2012. <www.sciencedaily.com/releases/2012/09/120918154108.htm>.
University of Arkansas, Fayetteville. (2012, September 18). Research gives insight into graphene-metal junctions. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2012/09/120918154108.htm
University of Arkansas, Fayetteville. "Research gives insight into graphene-metal junctions." ScienceDaily. www.sciencedaily.com/releases/2012/09/120918154108.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Two Stunt Pilots Perform Incredibly Close Flyby

Two Stunt Pilots Perform Incredibly Close Flyby

Rumble (Jan. 29, 2015) — Two pilots from &apos;Escuadrilla Argentina de Acrobacia Aιrea&apos; perform an incredibly low altitude flyby stunt during a recent show exhibition in Argentina. Check it out! Video provided by Rumble
Powered by NewsLook.com
Why Researchers Say We Should Cut Back On Biofuels

Why Researchers Say We Should Cut Back On Biofuels

Newsy (Jan. 29, 2015) — Biofuels aren&apos;t the best alternative to fossil fuels, according to a new report. In fact, they&apos;re quite a bad one. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins