Featured Research

from universities, journals, and other organizations

Horticultural hijacking: The dark side of beneficial soil bacteria

Date:
September 21, 2012
Source:
University of Delaware
Summary:
It’s a battleground down there — in the soil where plants and bacteria dwell. Even though beneficial root bacteria come to the rescue when a plant is being attacked by pathogens, there’s a "dark side" to the relationship between the plant and its white knight, according to new research.

Biofilm formed by soil bacteria (Bacillus subtilis) on the roots of an Arabidopsis plant.
Credit: Image courtesy of University of Delaware

It's a battleground down there -- in the soil where plants and bacteria dwell. Even though beneficial root bacteria come to the rescue when a plant is being attacked by pathogens, there's a dark side to the relationship between the plant and its white knight.

According to research reported by a University of Delaware scientific team in the September online edition of Plant Physiology, the most highly cited plant journal, a power struggle ensues as the plant and the "good" bacteria vie over who will control the plant's immune system.

"For the brief period when the beneficial soil bacterium Bacillus subtilis is associated with the plant, the bacterium hijacks the plant's immune system," says Harsh Bais, assistant professor of plant and soil sciences, whose laboratory group led the research at the Delaware Biotechnology Institute.

In studies of microbe-associated molecular patterns (MAMPs), a hot area of plant research, the UD team found that B. subtilis produces a small antimicrobial protein that suppresses the root defense response momentarily in the lab plant Arabidopsis.

"It's the first time we've shown classically how suppression by a benign bacteria works," Bais says. "There are shades of gray -- the bacteria that we view as beneficial don't always work toward helping plants."

In the past, Bais' lab has shown that plants under aerial attack send an SOS message, through secretions of the chemical compound malate, to recruit the beneficial B. subtilis to come help.

In more recent work, Bais and his collaborators showed that MAMP perception of pathogens at the leaf level could trigger a similar response in plants. Through an intraplant, long-distance signaling, from root to shoot, beneficial bacteria are recruited to forge a system-wide defense, boosting the plant's immune system, the team demonstrated. In that study, the Bais team also questioned the overall tradeoffs involved in plants that are associated with so-called beneficial microbes.

In the latest work, involving the testing of more than 1,000 plants, the researchers shed more light on the relationship. They show that B. subtilis uses a secreted peptide to suppress the immune response in plants. It is known that plants synthesize several antimicrobial compounds to ward off bacteria, Bais says.

The team also shows that when plant leaves were treated with a foliar MAMP -- flagellin, a structural protein in the flagellum, the tail-like appendage that bacteria use like a propeller -- it triggered the recruitment of beneficial bacteria to the plant roots.

"The ability of beneficial bacteria to suppress plant immunity may facilitate efficient colonization of rhizobacteria on the roots," Bais says. Rhizobacteria form an important symbiotic relationship with the plant, fostering its growth by converting nitrogen in the air into a nutrient form the plant can use.

"We don't know how long beneficial bacteria could suppress the plant immune response, but we do know there is a very strong warfare under way underground," Bais says, noting that his lab is continuing to explore these interesting questions. "We are just beginning to understand this interaction between plants and beneficial soil bacteria."

The lead author of the research article was Venkatachalam Lakshmanan, a postdoctoral researcher in the Department of Plant and Soil Sciences; Sherry Kitto, professor of plant and soil sciences; Jeffrey Caplan, associate director of UD's Bio-Imaging Center; Yu-Sung Wu, director of the Protein Production Facility; Daniel B. Kearns, associate professor in the Department of Biology at Indiana University; and Yi-Huang Hsueh , of the Graduate School of Biotechnology and Bioengineering at Yuan Ze University, Taiwan.

The research was supported by grants from the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Delaware. The original article was written by Tracey Bryant. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. Lakshmannan, S. Kitto, J. Caplan, Y.-H. Hsueh, D. Kearns, Y.-S. Wu, H. Bais. Microbe-Associated Molecular Patterns (MAMPs)-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis.. Plant Physiology, 2012; DOI: 10.1104/pp.112.200386

Cite This Page:

University of Delaware. "Horticultural hijacking: The dark side of beneficial soil bacteria." ScienceDaily. ScienceDaily, 21 September 2012. <www.sciencedaily.com/releases/2012/09/120921111038.htm>.
University of Delaware. (2012, September 21). Horticultural hijacking: The dark side of beneficial soil bacteria. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/09/120921111038.htm
University of Delaware. "Horticultural hijacking: The dark side of beneficial soil bacteria." ScienceDaily. www.sciencedaily.com/releases/2012/09/120921111038.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins