Featured Research

from universities, journals, and other organizations

Bioengineers design rapid diagnostic tests inspired by nature

Date:
September 28, 2012
Source:
University of California - Santa Barbara
Summary:
By mimicking nature's own sensing mechanisms, bioengineers have designed inexpensive medical diagnostic tests that take only a few minutes to perform. Their findings may aid efforts to build point-of-care devices for quick medical diagnosis of sexually transmitted diseases, allergies, autoimmune diseases, and a number of other diseases. The new technology could dramatically impact world health, according to the research team.

An electrochemical DNA-switch (red ribbon, or blue in the animation) detects its target antibody (green) directly in blood. By mimicking nature's own sensing mechanisms, Vallée-Bélisle, Plaxco and Ricci have built a synthetic molecular switch that enables the fast and convenient detection of diagnostically relevant antibodies. The sensing principle is straightforward: Upon antibody binding, the switch opens and separates a signaling element (bright circle) from the surface of an underlying electrode. This causes a signal change that can be easily measured using inexpensive devices similar to those used in the home glucose self-test meter. Using these "nature-inspired" nanoswitches the researchers were able to detect anti-HIV antibodies directly in whole blood in less than five minutes.
Credit: Peter Allen

By mimicking nature's own sensing mechanisms, bioengineers at UC Santa Barbara and University of Rome Tor Vergata have designed inexpensive medical diagnostic tests that take only a few minutes to perform. Their findings may aid efforts to build point-of-care devices for quick medical diagnosis of sexually transmitted diseases (STDs), allergies, autoimmune diseases, and a number of other diseases. The new technology could dramatically impact world health, according to the research team.

The rapid and easy-to-use diagnostic test consists of a nanometer-scale DNA "switch" that can quickly detect antibodies specific to a wide range of diseases. The research is described in an article published this month in the Journal of the American Chemical Society.

The design was created by the research group of Kevin W. Plaxco, a professor in UCSB's Department of Chemistry and Biochemistry. He noted that, despite the power of current diagnostic tests, a significant limitation is that they still require complex laboratory procedures. "Patients typically must wait for days or even weeks to receive the results of most STD tests," said Plaxco. "The blood sample has to be transported to the lab, its content analyzed by trained personnel, and the results sent back to the doctor's office. If we can move testing to the point of care, it eliminates the lag between testing and treatment, which would enhance the effectiveness of medical interventions, and, for infectious diseases like STDs, reduce transmission."

The key breakthrough underlying this new technology came from observing nature. "All creatures, from bacteria to humans, monitor their environments using amazing 'molecular nanoswitches' that signal the presence of a specific target by changing their structure," said Alexis Vallée-Bélisle, a postdoctoral scholar and co-first author of the study. "For example, on the surface of our cells, there are millions of receptor proteins that detect various molecules by switching from an 'off state' to an 'on state.' The beauty of these switches is that they are able to work directly in very complex environments such as whole blood."

Plaxco's research group teamed with Francesco Ricci, professor at University of Rome Tor Vergata and co-first author of the paper, to build synthetic molecular switches that signal their state via a change in electric current. This change in current can be measured using inexpensive electronics similar to those in the home glucose test meter used by diabetics to check their blood sugar. Using these "nature-inspired" nanoswitches, the researchers were able to detect anti-HIV antibodies directly in whole blood in less than five minutes.

"A great advantage of these electrochemical nanoswitches is that their sensing principle can be generalized to many different targets, allowing us to build inexpensive devices that could detect dozens of disease markers in less than five minutes in the doctor's office or even at home," said Ricci.

The authors noted that it may take several years to bring the devices to the market.

The additional co-authors are Fan Xia of Huazhong University of Science and Technology in Wuhan, China; and Takanori Uzawa of Hokkaido University in Sapporo, Japan.

This work was funded by the National Institute of Health, the Fond Québécois de la Recherche sur la Nature et les Technologies; the Italian Ministry of University and Research (MIUR) project "Futuro in Ricerca;" and the Bill & Melinda Gates Foundation, through the Grand Challenges Explorations Grant.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexis Vallée-Bélisle, Francesco Ricci, Takanori Uzawa, Fan Xia, Kevin W. Plaxco. Bioelectrochemical Switches for the Quantitative Detection of Antibodies Directly in Whole Blood. Journal of the American Chemical Society, 2012; 134 (37): 15197 DOI: 10.1021/ja305720w

Cite This Page:

University of California - Santa Barbara. "Bioengineers design rapid diagnostic tests inspired by nature." ScienceDaily. ScienceDaily, 28 September 2012. <www.sciencedaily.com/releases/2012/09/120928093721.htm>.
University of California - Santa Barbara. (2012, September 28). Bioengineers design rapid diagnostic tests inspired by nature. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2012/09/120928093721.htm
University of California - Santa Barbara. "Bioengineers design rapid diagnostic tests inspired by nature." ScienceDaily. www.sciencedaily.com/releases/2012/09/120928093721.htm (accessed September 18, 2014).

Share This



More Health & Medicine News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Artificial Sweetener Could Promote Diabetes

Artificial Sweetener Could Promote Diabetes

Newsy (Sep. 17, 2014) — Doctors once thought artificial sweeteners lacked the health risks of sugar, but a new study says they can impact blood sugar levels the same way. Video provided by Newsy
Powered by NewsLook.com
Ebola Vaccine Trial Gets Underway at Oxford University

Ebola Vaccine Trial Gets Underway at Oxford University

AFP (Sep. 17, 2014) — A healthy British volunteer is to become the first person to receive a new vaccine for the Ebola virus after US President Barack Obama called for action against the epidemic and warned it was "spiralling out of control." Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Obesity Rates Steady Even As Americans' Waistlines Expand

Obesity Rates Steady Even As Americans' Waistlines Expand

Newsy (Sep. 17, 2014) — Researchers are puzzled as to why obesity rates remain relatively stable as average waistlines continue to expand. Video provided by Newsy
Powered by NewsLook.com
President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins