Featured Research

from universities, journals, and other organizations

Mechanism of opiate addiction is completely different from other drugs

Date:
October 5, 2012
Source:
The Mount Sinai Hospital / Mount Sinai School of Medicine
Summary:
Chronic morphine exposure has the opposite effect on the brain compared to cocaine in mice, providing new insight into the basis of opiate addiction, according to researchers. They found that a protein called brain-derived neurotrophic factor, which is increased in cocaine addiction, is inhibited in opioid addiction.

Chronic morphine exposure has the opposite effect on the brain compared to cocaine in mice, providing new insight into the basis of opiate addiction, according to Mount Sinai School of Medicine researchers. They found that a protein called brain-derived neurotrophic factor (BDNF), which is increased in cocaine addiction, is inhibited in opioid addiction.

Related Articles


The research is published in the October 5 issue of Science.

"Our study shows that BDNF responds completely differently with opioid administration compared to cocaine," said Ja Wook Koo, PhD, Postdoctoral Fellow in the Department of Neuroscience at Mount Sinai School of Medicine. "Morphine creates reward by inhibiting BDNF, whereas cocaine acts by enhancing BDNF activity."

BDNF is key to several functions in the brain and peripheral nervous system, notably for making new nerve cells and helping the survival of existing ones. It is also known to activate reward centers in the brain. Cocaine causes an increase in the presence of BDNF in a reward center of the brain called the nucleus accumbens, which results in activation of the reward center.

In the current study, the research team found that morphine suppresses BDNF in a different reward center of the brain known as the ventral tegmental area (VTA), in order to achieve reward and chronic addiction. The morphine caused a depletion of BDNF in the VTA of mice, which activated the reward centers. However, when BDNF was administered to the VTA of mice, it inhibited that reward. When BDNF was administered to the nucleus accumbens, there was no reward.

When researchers analyzed morphine-induced changes in gene expression in the nucleus accumbens, the area of the brain in which morphine caused no reward or response they found that two genes, sox11 and gadd45g, mediated the brain's response to morphine, preventing any reward and addiction.

"This study provides important insight into the molecular basis for morphine addiction, and is the first to show that BDNF is a negative modulator in brain, especially in opioid addiction, unlike stimulant addiction," said Dr. Koo. "While further research is needed, the genes we identified may be useful targets in preventing addiction. Also, our data show that administering BDNF to the VTA may be a viable treatment in counteracting opioid addiction." Continuing to study the counteractive response of BDNF in morphine as compared to cocaine may also help researchers determine how poly-drug use may impact the brain.

Dr. Koo is part of the Eric Nestler, MD,PhD laboratory at Mount Sinai School of Medicine. Dr. Nestler is the Nash Family Professor and Chair of Neuroscience and Director of the Friedman Brain Institute at Mount Sinai. Students in the Mount Sinai Graduate School of Biological Sciences also participated in the research, including Haosheng Sun and Diane Damez-Werno.

This study was supported by grants from the National Institute on Drug Abuse and a Rubicon Grant from the Dutch Scientific Organization.


Story Source:

The above story is based on materials provided by The Mount Sinai Hospital / Mount Sinai School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. W. Koo, M. S. Mazei-Robison, D. Chaudhury, B. Juarez, Q. LaPlant, D. Ferguson, J. Feng, H. Sun, K. N. Scobie, D. Damez-Werno, M. Crumiller, Y. N. Ohnishi, Y. H. Ohnishi, E. Mouzon, D. M. Dietz, M. K. Lobo, R. L. Neve, S. J. Russo, M.-H. Han, E. J. Nestler. BDNF Is a Negative Modulator of Morphine Action. Science, 2012; 338 (6103): 124 DOI: 10.1126/science.1222265

Cite This Page:

The Mount Sinai Hospital / Mount Sinai School of Medicine. "Mechanism of opiate addiction is completely different from other drugs." ScienceDaily. ScienceDaily, 5 October 2012. <www.sciencedaily.com/releases/2012/10/121005134643.htm>.
The Mount Sinai Hospital / Mount Sinai School of Medicine. (2012, October 5). Mechanism of opiate addiction is completely different from other drugs. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/10/121005134643.htm
The Mount Sinai Hospital / Mount Sinai School of Medicine. "Mechanism of opiate addiction is completely different from other drugs." ScienceDaily. www.sciencedaily.com/releases/2012/10/121005134643.htm (accessed October 30, 2014).

Share This



More Mind & Brain News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Techy Tots Are Forefront of London's Baby Show

Techy Tots Are Forefront of London's Baby Show

AP (Oct. 28, 2014) Moms and Dads get a more hands-on approach to parenting with tech-centric products for raising their little ones. (Oct. 28) Video provided by AP
Powered by NewsLook.com
Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Newsy (Oct. 27, 2014) Researchers have come up with another reason why dark chocolate is good for your health. A substance in the treat can reportedly help with memory. Video provided by Newsy
Powered by NewsLook.com
Five-Year-Olds Learn Coding as Britain Eyes Digital Future

Five-Year-Olds Learn Coding as Britain Eyes Digital Future

AFP (Oct. 27, 2014) Coding has become compulsory for children as young as five in schools across the UK. Making it the first major world economy to overhaul its IT teaching and put programming at its core. Duration: 02:19 Video provided by AFP
Powered by NewsLook.com
Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins