Featured Research

from universities, journals, and other organizations

Recovering 'bodyguard' cells in pancreas may restore insulin production in diabetics

Date:
October 8, 2012
Source:
Thomas Jefferson University
Summary:
T regulatory cells in the pancreatic lymph nodes play important role in diabetes onset and recovery of the insulin production in diabetic patients, say researchers.

The key to restoring production of insulin in type I diabetic patients, previously known as juvenile diabetes, may be in recovering the population of protective cells known T regulatory cells in the lymph nodes at the "gates" of the pancreas, a new preclinical study published online October 8 in Cellular & Molecular Immunology by researchers in the Department of Bioscience Technologies at Thomas Jefferson University suggests.

Tatiana D. Zorina, M.D., Ph.D., an Assistant Professor in the Department of Bioscience Technologies, Jefferson School of Health Professions, and colleagues addressed a question of whether type I diabetic patients' own beta cells, which produce insulin, could recover/regenerate if protected from autoimmune cells. If successful, such an approach would promote the patient's own insulin production without need for its supplementation by insulin injections or beta cell transplantation from the cadaver organ donors.

Type 1 diabetes is usually diagnosed in children and young adults. As many as 3 million Americans have type 1 diabetes, and each year, more than 15,000 children and 15,000 adults are diagnosed in the United States. Type 1 diabetes is a disease that occurs as a result of destruction of beta cells producing insulin by autoimmune cells. The resulting lack of insulin, which is needed to metabolize/process the sugar, leads to increased levels of sugar in the blood and all clinical symptoms of type 1 diabetes. The only currently available therapies for type 1 diabetes patients are based on insulin provision (by different means).

In healthy people, the autoimmune cells are also present, but insulin-producing beta cells (residing in the pancreas) are normally protected from their attack by the T regulatory cells, or Treg cells. Treg cells confront and disable the autoimmune cells in the pancreatic lymph nodes (which play a role of the gates of the pancreas) and thus protect beta cells in the pancreas from being destroyed.

It was shown in this study conducted by Dr. Zorina's group that in the mouse model of type 1 diabetes the Treg cells that normally play a role of the beta cells' "bodyguards" fail to accumulate in the pancreatic lymph nodes, and hence to protect beta cells from being destroyed by the autoimmune cells. The researchers found a therapeutic regiment that normalized the observed deficiency of the Treg cells in the pancreatic lymph nodes in diabetic mice.

As a result of this treatment, the animals were cured from diabetes: their beta cells re-grew (being protected from the autoimmune cells by the Treg cells) and they had normal blood sugar levels for the rest of their lives.

However, the therapy that was utilized to treat these mice was based on bone marrow transplantation, and this treatment cannot be used for diabetic people because of its serious complications. The objective of the next step of this study was to explore the mechanisms that were responsible for results observed in the mouse model for their future adaptation into a clinically safe therapeutic protocol.

The article by Dr. Zorina and colleagues, entitled "Treg Cells in Pancreatic Lymph Nodes: the Possible Role in Diabetogenesis and Cell Regeneration in T1D Model" reports data suggesting a new approach for normalization of Treg cells' protective function in type 1 diabetes. The function of the CXCR4/SDF-1 chemokine axis that is responsible for the Treg cells' trafficking and homing was shown in this study to be significantly decreased in pancreatic lymph nodes in type 1 diabetes. This means that the Treg cells' decreased accumulation and compromised protective effect in the pancreatic lymph nodes could be improved by rectification of the function of this axis.

"Our study represents a new and very specific approach to confront the local autoimmune reactions in type 1 diabetes," said Dr. Zorina. "What we've shown here is that normalizing the Treg cell population in the pancreatic lymph nodes of diabetic mice is associated with the regeneration of their own insulin-producing beta cells and the resulting normalization of their blood sugar levels."

"The ultimate goal of our research is to establish an immunomodulatory protocol that would increase accumulation of the Treg cells in the vicinity of the insulin-producing beta cells in humans by rectification of function of molecules responsible for their homing in this area. This approach to confront insulin deficiency in type 1 diabetes by allowing the patients' own beta cells to recover through the control of Treg cell accumulation in the pancreatic lymph nodes might become a new therapy for type 1 diabetes," said Dr. Zorina."


Story Source:

The above story is based on materials provided by Thomas Jefferson University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Benjamin K Nti, Janet L Markman, Suzanne Bertera, Alexis J Styche, Robert J Lakomy, Vladimir M Subbotin, Massimo Trucco, Tatiana D Zorina. Treg cells in pancreatic lymph nodes: the possible role in diabetogenesis and β cell regeneration in a T1D model. Cellular and Molecular Immunology, 2012; DOI: 10.1038/cmi.2012.36

Cite This Page:

Thomas Jefferson University. "Recovering 'bodyguard' cells in pancreas may restore insulin production in diabetics." ScienceDaily. ScienceDaily, 8 October 2012. <www.sciencedaily.com/releases/2012/10/121008134030.htm>.
Thomas Jefferson University. (2012, October 8). Recovering 'bodyguard' cells in pancreas may restore insulin production in diabetics. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/10/121008134030.htm
Thomas Jefferson University. "Recovering 'bodyguard' cells in pancreas may restore insulin production in diabetics." ScienceDaily. www.sciencedaily.com/releases/2012/10/121008134030.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins