Featured Research

from universities, journals, and other organizations

Rare genetic disorder points to molecules that may play role in schizophrenia

Date:
October 10, 2012
Source:
Society for Neuroscience
Summary:
Scientists studying a rare genetic disorder have identified a molecular pathway that may play a role in schizophrenia, according to new research. The findings may one day guide researchers to new treatment options for people with schizophrenia -- a devastating disease that affects approximately 1% of the world's population.

Scientists studying a rare genetic disorder have identified a molecular pathway that may play a role in schizophrenia, according to new research in the Oct. 10 issue of The Journal of Neuroscience. The findings may one day guide researchers to new treatment options for people with schizophrenia -- a devastating disease that affects approximately 1 percent of the world's population.

Related Articles


Schizophrenia is characterized by a multitude of symptoms, including hallucinations, social withdrawal, and learning and memory deficits, which usually appear during late adolescence or early adulthood. Efforts to identify disease causes have been complicated by the fact that no single genetic mutation is strongly associated with the disease. By studying a rare genetic disorder that increases the risk of schizophrenia, Laurie Earls, PhD, and colleagues in the laboratory of Stanislav Zakharenko, MD, PhD, at St. Jude Children's Research Hospital identified molecular changes that affect memory and are also present in people with schizophrenia.

Approximately 30 percent of people with a genetic disorder known as 22q11 deletion syndrome develop schizophrenia, making it one of the strongest risk factors for the disease. In previous studies of mice with the 22q11 deletion, Zakharenko's group identified changes in nerve cells leading to deficits in the hippocampus -- the brain's learning and memory center -- that appear with age. In the current study, the group confirmed similar molecular changes occur in people with schizophrenia. They also zeroed in on the gene contributing to the nerve cell changes.

"This study makes some very important discoveries about the precise mechanisms underlying the learning and memory deficits seen in the genetic mouse model -- problems that are a central part of the human disease," said Carrie Bearden, PhD, an expert on 22q11 deletion syndrome at the University of California, Los Angeles, who was not involved in the study. "Pinpointing the specific gene involved is the first step toward developing targeted therapies that could reverse the cognitive deficits associated with schizophrenia, both in the context of this genetic mutation and the broader population," she added.

In previous studies, Zakharenko's group found that abnormal nerve cell communication and cognitive dysfunction was associated with elevated levels of a protein that regulates calcium in certain nerve cells known as Serca2. These abnormalities are only detectable with age in mice with the 22q11 deletion.

In the current study, the researchers identified the gene Dgcr8 as the source of the changes.It produces molecules called microRNAs that normally keep Serca2 in check. Without them, the protein becomes elevated.By adding these molecules back into the hippocampus of animals with the 22q11 deletion, the researchers were able to reduce elevated Serca2 levels and reduce the cellular deficits associated with this genetic defect.

To assess whether the findings from these genetic mouse studies might translate to schizophrenia, the authors analyzed post-mortem brain tissue from people with schizophrenia. The researchers discovered that Serca2 was elevated even in patients with schizophrenia who did not have the 22q11 deletion.

"These data suggest a link between the nerve cell changes in patients with the 22q11 deletion syndrome and those that occur in patients with schizophrenia," Zakharenko said. "Serca2 regulation represents a novel therapeutic target for schizophrenia."

This study was funded by the National Institute of Mental Health and St. Jude Children's Research Hospital.


Story Source:

The above story is based on materials provided by Society for Neuroscience. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. R. Earls, R. G. Fricke, J. Yu, R. B. Berry, L. T. Baldwin, S. S. Zakharenko. Age-Dependent MicroRNA Control of Synaptic Plasticity in 22q11 Deletion Syndrome and Schizophrenia. Journal of Neuroscience, 2012; 32 (41): 14132 DOI: 10.1523/JNEUROSCI.1312-12.2012

Cite This Page:

Society for Neuroscience. "Rare genetic disorder points to molecules that may play role in schizophrenia." ScienceDaily. ScienceDaily, 10 October 2012. <www.sciencedaily.com/releases/2012/10/121009171456.htm>.
Society for Neuroscience. (2012, October 10). Rare genetic disorder points to molecules that may play role in schizophrenia. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2012/10/121009171456.htm
Society for Neuroscience. "Rare genetic disorder points to molecules that may play role in schizophrenia." ScienceDaily. www.sciencedaily.com/releases/2012/10/121009171456.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Many Don't Know They Have Alzheimer's, But Their Doctors Do

Many Don't Know They Have Alzheimer's, But Their Doctors Do

Newsy (Mar. 24, 2015) According to a new study by the Alzheimer&apos;s Association, more than half of those who have the degenerative brain disease aren&apos;t told by their doctors. Video provided by Newsy
Powered by NewsLook.com
A Quick 45-Minute Nap Can Improve Your Memory

A Quick 45-Minute Nap Can Improve Your Memory

Newsy (Mar. 23, 2015) Researchers found those who napped for 45 minutes to an hour before being tested on information recalled it five times better than those who didn&apos;t. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins