Featured Research

from universities, journals, and other organizations

How nerve signals are sent around the body at varying speeds as electrical impulses

Date:
October 11, 2012
Source:
University of Edinburgh
Summary:
Scientists have proved a 60-year-old theory about how nerve signals are sent around the body at varying speeds as electrical impulses. Researchers tested how these signals are transmitted through nerve fibers, which enables us to move and recognize sensations such as touch and smell.

Scientists have proved a 60-year-old theory about how nerve signals are sent around the body at varying speeds as electrical impulses.

Researchers tested how these signals are transmitted through nerve fibres, which enables us to move and recognise sensations such as touch and smell.

The findings from the University of Edinburgh have validated an idea first proposed by Nobel laureate Sir Andrew Huxley.

It has been known for many years that an insulating layer -- known as myelin -- which surrounds nerve fibres is crucial in determining how quickly these signals are sent.

This insulating myelin is interrupted at regular intervals along the nerve by gaps called nodes.

Scientists, whose work was funded by the Wellcome Trust, have now proved that the longer the distance between nodes, the quicker the nerve fibres send signals down the nerves.

The theory that the distance between these gaps might affect the speed of electrical signals was first proposed by Sir Andrew Huxley, who won the Nobel Prize in 1963 for his work on electrical signalling in the nervous system, and who died earlier this year.

The study, published in the journal Current Biology, will help provide insight into what happens in people with nerve damage. It will also shed light on how nerves develop before and after birth.

Professor Peter Brophy, Director of the University of Edinburgh's Centre for Neuroregeneration, said: "The study gives us greater insight into how the central and peripheral nervous systems work and what happens after nerves become injured. We know that peripheral nerves have the capacity to repair, but shorter lengths of insulation around the nerve fibres after repair affect the speed with which impulses are sent around the body."

The researchers found that when the myelin reached a certain length, the speed with which nerves impulses were conducted reached a peak.

The study, carried out in mice, also confirmed that a protein -- periaxin -- plays a key role in regulating the length of myelin layers around nerve fibres.


Story Source:

The above story is based on materials provided by University of Edinburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. LaiManN. Wu, Anna Williams, Ada Delaney, DianeL. Sherman, PeterJ. Brophy. Increasing Internodal Distance in Myelinated Nerves Accelerates Nerve Conduction to a Flat Maximum. Current Biology, 2012; DOI: 10.1016/j.cub.2012.08.025

Cite This Page:

University of Edinburgh. "How nerve signals are sent around the body at varying speeds as electrical impulses." ScienceDaily. ScienceDaily, 11 October 2012. <www.sciencedaily.com/releases/2012/10/121011124440.htm>.
University of Edinburgh. (2012, October 11). How nerve signals are sent around the body at varying speeds as electrical impulses. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2012/10/121011124440.htm
University of Edinburgh. "How nerve signals are sent around the body at varying speeds as electrical impulses." ScienceDaily. www.sciencedaily.com/releases/2012/10/121011124440.htm (accessed September 18, 2014).

Share This



More Health & Medicine News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Artificial Sweetener Could Promote Diabetes

Artificial Sweetener Could Promote Diabetes

Newsy (Sep. 17, 2014) Doctors once thought artificial sweeteners lacked the health risks of sugar, but a new study says they can impact blood sugar levels the same way. Video provided by Newsy
Powered by NewsLook.com
Ebola Vaccine Trial Gets Underway at Oxford University

Ebola Vaccine Trial Gets Underway at Oxford University

AFP (Sep. 17, 2014) A healthy British volunteer is to become the first person to receive a new vaccine for the Ebola virus after US President Barack Obama called for action against the epidemic and warned it was "spiralling out of control." Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Obesity Rates Steady Even As Americans' Waistlines Expand

Obesity Rates Steady Even As Americans' Waistlines Expand

Newsy (Sep. 17, 2014) Researchers are puzzled as to why obesity rates remain relatively stable as average waistlines continue to expand. Video provided by Newsy
Powered by NewsLook.com
President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins