Featured Research

from universities, journals, and other organizations

Making a layer cake with atomic precision

Date:
October 14, 2012
Source:
University of Manchester
Summary:
Graphene and associated one-atom-thick crystals offer the possibility of a vast range of new materials and devices by stacking individual atomic layers on top of each other, new research shows.

Scientists have used individual one-atom-thick crystals to construct a multilayer cake that works as a nanoscale electric transformer.
Credit: Image courtesy of University of Manchester

Graphene and associated one-atom-thick crystals offer the possibility of a vast range of new materials and devices by stacking individual atomic layers on top of each other, new research from The University of Manchester shows.

In a report published in Nature Physics, a group led Dr Leonid Ponomarenko and Nobel prize-winner Professor Andre Geim has assembled individual atomic layers on top of each other in a desired sequence.

The team used individual one-atom-thick crystals to construct a multilayer cake that works as a nanoscale electric transformer.

Graphene, isolated for the first time at The University of Manchester in 2004, has the potential to revolutionise diverse applications from smartphones and ultrafast broadband to drug delivery and computer chips.

It has the potential to replace existing materials, such as silicon, but the Manchester researchers believe it could truly find its place with new devices and materials yet to be invented.

In the nanoscale transformer, electrons moving in one metallic layer pull electrons in the second metallic layer by using their local electric fields. To operate on this principle, the metallic layers need to be insulated electrically from each other but separated by no more than a few interatomic distances, a giant leap from the existing nanotechnologies.

These new structures could pave the way for a new range of complex and detailed electronic and photonic devices which no other existing material could make, which include various novel architectures for transistors and detectors.

The scientists used graphene as a one-atom-thick conductive plane while just four atomic layers of boron nitride served as an electrical insulator.

The researchers started with extracting individual atomic planes from bulk graphite and boron nitride by using the same technique that led to the Nobel Prize for graphene, a single atomic layer of carbon. Then, they used advanced nanotechnology to mechanically assemble the crystallites one by one, in a Lego style, into a crystal with the desired sequence of planes.

The nano-transformer was assembled by Dr Roman Gorbachev, of The University of Manchester, who described the required skills. He said: "Every Russian and many in the West know 'The Tale of the Clockwork Steel Flea'.

"It could only be seen through the most powerful microscope but still danced and even had tiny horseshoes. Our atomic-scale Lego perhaps is the next step of craftsmanship."

Professor Geim added: "The work proves that complex devices with various functionalities can be constructed plane by plane with atomic precision.

"There is a whole library of atomically-thin materials. By combining them, it is possible to create principally new materials that don't exist in nature. This avenue promises to become even more exciting than graphene itself."


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Journal Reference:

  1. L Ponomarenko, R Gorbachev and A Geim. Strong Coulomb drag and broken symmetry in double-layer graphene. Nature Physics, 2012

Cite This Page:

University of Manchester. "Making a layer cake with atomic precision." ScienceDaily. ScienceDaily, 14 October 2012. <www.sciencedaily.com/releases/2012/10/121014162910.htm>.
University of Manchester. (2012, October 14). Making a layer cake with atomic precision. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2012/10/121014162910.htm
University of Manchester. "Making a layer cake with atomic precision." ScienceDaily. www.sciencedaily.com/releases/2012/10/121014162910.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins