Featured Research

from universities, journals, and other organizations

Evolution mostly driven by brawn, not brains, analysis finds

Date:
October 15, 2012
Source:
University College London
Summary:
The most common measure of intelligence in animals, brain size relative to body size, may not be as dependent on evolutionary selection on the brain as previously thought, according to a new analysis by scientists.

Researchers have found that the most significant factor in determining relative brain size is often evolutionary pressure on body size, and not brain size. For example, the evolutionary history of bats reveals they decreased body size much faster than brain size, leading to an increase in relative brain size. As a result, small bats were able to evolve improved flying maneuvrability while maintaining the brainpower to handle foraging in cluttered environments.
Credit: Valeriy Kirsanov / Fotolia

The most common measure of intelligence in animals, brain size relative to body size, may not be as dependent on evolutionary selection on the brain as previously thought, according to a new analysis by scientists.

Related Articles


Brain size relative to body size has been used by generations of scientists to predict an animal's intelligence. For example, although the human brain is not the largest in the animal kingdom in terms of volume or mass, it is exceptionally large considering our moderate body mass.

Now, a study by a team of scientists at UCL, the University of Konstanz, and the Max Planck Institute of Ornithology has found that the relationship between the two traits is driven by different evolutionary mechanisms in different animals.

Crucially, researchers have found that the most significant factor in determining relative brain size is often evolutionary pressure on body size, and not brain size. For example, the evolutionary history of bats reveals they decreased body size much faster than brain size, leading to an increase in relative brain size. As a result, small bats were able to evolve improved flying maneuvrability while maintaining the brainpower to handle foraging in cluttered environments.

This shows that relative brain size can not be used unequivocally as evidence of selection for intelligence. The study is published today in the Proceedings of the National Academy of Sciences.

Dr Jeroen Smaers (UCL Anthropology and UCL Genetics, Evolution & Environment), lead author of the study said: "When using brain size relative to body size as a measure of intelligence, the assumption has always been that this measure is primarily driven by changes in brain size. It now appears that the relationship between changes in brain and body size in animals is more complex than has long been assumed.

"Changes in body size often occur independently of changes in brain size and vice versa. Moreover, the nature of these independent changes in brain and body size, are different in different groups of animals."

Researchers at UCL gathered data on brain and body mass for hundreds of modern and extinct bats, carnivorans, and primates. They then charted brain and body size evolution over time for each species. Across millions of years, most animals increased body size faster than brain size, with the exception of bats.

In primate lineages decreases in brain size marginally outpaced those in body size. Carnivoran evolution has taken yet a different course, with changes generally more strongly associated with body size rather than selection on brain size and cognition.

Given such differences, the authors believe that the predominant interpretation of relative brain size as the consequence of selection on intelligence inherently masks the often more significant influence of selection on body size.

The research was supported by the Natural Environment Research Council (NERC).


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeroen B. Smaers, Dina K. N. Dechmann, Anjali Goswami, Christophe Soligo, and Kamran Safi. Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1212181109

Cite This Page:

University College London. "Evolution mostly driven by brawn, not brains, analysis finds." ScienceDaily. ScienceDaily, 15 October 2012. <www.sciencedaily.com/releases/2012/10/121015152005.htm>.
University College London. (2012, October 15). Evolution mostly driven by brawn, not brains, analysis finds. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2012/10/121015152005.htm
University College London. "Evolution mostly driven by brawn, not brains, analysis finds." ScienceDaily. www.sciencedaily.com/releases/2012/10/121015152005.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins