Featured Research

from universities, journals, and other organizations

Epigenetic analysis of stomach cancer finds new disease subtypes

Date:
October 17, 2012
Source:
Duke University Medical Center
Summary:
Researchers have identified numerous new subtypes of gastric cancer that are triggered by environmental factors.

Researchers at the Duke-NUS Graduate Medical School in Singapore have identified numerous new subtypes of gastric cancer that are triggered by environmental factors.

Related Articles


Reported in the Oct. 17, 2012, issue of the journal Science Translational Medicine, the findings are based on the science of epigenetics, a study of gene activity. The insights into the complexities of stomach cancer could lead to better treatment approaches for the second leading cancer killer in the world, behind lung cancer.

"Gastric cancer is a heterogenous disease with individual patients often displaying markedly different responses to the same treatment," said Patrick Tan, M.D., Ph.D at Duke-NUS and lead author of the study. "Improving gastric cancer clinical outcomes will require molecular approaches capable of subdividing patients into biologically similar subgroups, and designing subtype-specific therapies for each group."

Like many cancers, stomach cancer is caused by genetic mutations, but also by external factors that affect the way genes work. These factors, called epigenetic alterations, work by methylation, a chemical process in which specific locations along the DNA, called CpG sites, are modified through the addition of a methyl group. Methylation silences a gene's behavior without actually altering the DNA sequence.

In their study, Tan and colleagues used 240 primary tumors and cell lines to conduct the first full survey of the DNA methylation landscape in gastric cancer, known as the methylome. Their goal was to identify new molecular subgroups of gastric cancer not caused by primary genetic mutations, particularly those that might be targeted with therapies.

The researchers found that the gastric cancer methylome was widespread, with more than half of the CpG sites analyzed demonstrating altered methylation patterns in cancer. Many of the methylation alterations were associated with significant changes in gene expression, suggesting that the methylation alterations may be functionally important in the development of gastic cancer.

The researchers also identified a subgroup of gastric cancers with extremely high levels of methylation. The CIMP subgroup (CpG Island Methylator Phenotype) had been previously proposed, but its clinical significance remained unclear. The Duke-NUS-led team confirmed the CIMP subgroup, correlating it with younger patients who had a poor prognosis. They also demonstrated in laboratory experiments that these tumors may have increased sensitivity to demethylating drugs.

"Our study does provide clarity in unambiguously demonstrating the presence of this subgroup and its features," Tan said. "What's more, we are encouraged that there may be potential utility in testing the sensitivity of CIMP tumors to more potent DNA demethylating agents and possibly other epigenetic drugs."

The study also discovered long-range regions of epigenetic silencing, some targeting a generalized region and others that targeting a single gene. The finding may help identify novel genes where methylation events play a role in tumor growth.

"Our results strongly demonstrate that gastric cancer is not one disease but a conglomerate of multiple diseases, each with a different underlying biology and hallmark features," Tan said. "If gastric cancer is the result of multiple interacting factors, including both environmental factors and host genetic factors, we need better ways to diagnosis and treat it.

"These findings move us forward, and additional work will focus on developing simple diagnostic tests to detect gastric cancer at earlier stages, plus drugs and drug targets that might exhibit high potency against different molecular subtypes of disease," Tan said.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hermioni Zouridis, Niantao Deng, Tatiana Ivanova, Yansong Zhu, Bernice Wong, Dan Huang, Yong Hui Wu, Yingting Wu, Iain Beehuat Tan, Natalia Liem, Veena Gopalakrishnan, Qin Luo, Jeanie Wu, Minghui Lee, Wei Peng Yong, Liang Kee Goh, Bin Tean Teh, Steve Rozen, and Patrick Tan. Methylation Subtypes and Large-Scale Epigenetic Alterations in Gastric Cancer. Sci Transl Med, 17 October 2012 DOI: 10.1126/scitranslmed.3004504

Cite This Page:

Duke University Medical Center. "Epigenetic analysis of stomach cancer finds new disease subtypes." ScienceDaily. ScienceDaily, 17 October 2012. <www.sciencedaily.com/releases/2012/10/121017141801.htm>.
Duke University Medical Center. (2012, October 17). Epigenetic analysis of stomach cancer finds new disease subtypes. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2012/10/121017141801.htm
Duke University Medical Center. "Epigenetic analysis of stomach cancer finds new disease subtypes." ScienceDaily. www.sciencedaily.com/releases/2012/10/121017141801.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins