Featured Research

from universities, journals, and other organizations

Study confirms magnetic properties of silicon nano-ribbons

Date:
October 17, 2012
Source:
Oak Ridge National Laboratory
Summary:
Nano-ribbons of silicon configured so the atoms resemble chicken wire could hold the key to ultrahigh density data storage and information processing systems of the future, according to new research.

Nano-ribbons of silicon configured so the atoms resemble chicken wire could hold the key to ultrahigh density data storage and information processing systems of the future.

This was a key finding of a team of scientists led by Paul Snijders of the Department of Energy's Oak Ridge National Laboratory. The researchers used scanning tunneling microscopy and spectroscopy to validate first principle calculations -- or models -- that for years had predicted this outcome. The discovery, detailed in New Journal of Physics, validates this theory and could move scientists closer to their long-term goal of cost-effectively creating magnetism in non-magnetic materials.

"While scientists have spent a lot of time studying silicon because it is the workhorse for current information technologies, for the first time we were able to clearly establish that the edges of nano-ribbons feature magnetic silicon atoms," said Snijders, a member of the Materials Science and Technology Division.

The surprise is that while bulk silicon is non-magnetic, the edges of nano-ribbons of this material are magnetic. Snijders and colleagues at ORNL, Argonne National Laboratory, the University of Wisconsin and Naval Research Laboratory showed that the electron spins are ordered anti-ferromagnetically, which means they point up and down alternatingly. Configured this way, the up and down spin-polarized atoms serve as effective substitutes for conventional zeros and ones common to electron, or charge, current.

"By exploiting the electron spins arising from intrinsic broken bonds at gold-stabilized silicon surfaces, we were able to replace conventional electronically charged zeros and ones with spins pointing up and down," Snijders said.

This discovery provides a new avenue to study low-dimensional magnetism, the researchers noted. Most importantly, such stepped silicon-gold surfaces provide an atomically precise template for single-spin devices at the ultimate limit of high-density data storage and processing.

"In the quest for smaller and less expensive magnets, electro-motors, electronics and storage devices, creating magnetism in otherwise non-magnetic materials could have far-reaching implications," Snijders said.

This research was funded by DOE's Office of Science, the National Science Foundation and the Office of Naval Research.

This work was supported by the Center for Nanophase Materials Sciences at ORNL. CNMS is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.


Story Source:

The above story is based on materials provided by Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. P C Snijders, P S Johnson, N P Guisinger, S C Erwin, F J Himpsel. Spectroscopic evidence for spin-polarized edge states in graphitic Si nanowires. New Journal of Physics, 2012; 14 (10): 103004 DOI: 10.1088/1367-2630/14/10/103004

Cite This Page:

Oak Ridge National Laboratory. "Study confirms magnetic properties of silicon nano-ribbons." ScienceDaily. ScienceDaily, 17 October 2012. <www.sciencedaily.com/releases/2012/10/121017160830.htm>.
Oak Ridge National Laboratory. (2012, October 17). Study confirms magnetic properties of silicon nano-ribbons. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2012/10/121017160830.htm
Oak Ridge National Laboratory. "Study confirms magnetic properties of silicon nano-ribbons." ScienceDaily. www.sciencedaily.com/releases/2012/10/121017160830.htm (accessed April 21, 2014).

Share This



More Matter & Energy News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins