Featured Research

from universities, journals, and other organizations

Strengthening fragile forests of carbon nanotubes for new MEMS applications

Date:
October 26, 2012
Source:
AVS: Science & Technology of Materials, Interfaces, and Processing
Summary:
By using a variety of materials not commonly associated with MEMS technology, researchers have created stronger microstructures that can form precise, tall and narrow 3-D shapes – characteristics that were never before possible in MEMS.

Microelectromechanical systems (MEMS) are incredibly tiny devices, often built on the scale of millionths of a meter. Conventional MEMS structures tend to be made out of silicon-based materials familiar to the micro-electronics industry, but this ignores a suite of useful materials such as other semiconductors, ceramics, and metals. By using a variety of materials not commonly associated with MEMS technology, a team from Brigham Young University (BYU) in Provo, Utah has created stronger microstructures that can form precise, tall and narrow 3-D shapes -- characteristics that were never before possible in MEMS.

The researchers will present their latest findings at the AVS 59th International Symposium and Exhibition, held Oct. 28 -- Nov. 2, in Tampa, Fla.

To break the MEMS materials barrier, the researchers devised a new production process called carbon nanotube templated microfabrication (CNT-M). It uses patterned, vertically aligned carbon nanotube arrays called forests as a 3-D microfabrication scaffold. With this scaffold, the researchers can create precise, tall and fine-featured microstructures. But the forests are extremely fragile. To make them hardier the team replaced the air spaces between the carbon nanotubes with a filler material by atomistic deposition.

The team has used their new CNT-M framework to fabricate metal components from tungsten, molybdenum and nickel. These metals provide desirable properties for MEMS applications and components, including high electrical and thermal conductivity, high melting temperatures, resistance to corrosion, low thermal expansion and hardness.

The BYU team's advances open the door for manipulating matter in novel ways that optimize efficiency, performance and cost across a range of fields, including medicine, imaging, computing, materials synthesis, chemical synthesis, and printing. Most biological and biomedical processes occur at the nanoscale. Developing models and templates at this scale enables scientists to interact with, control and leverage the unusual physical, chemical, mechanical, and optical properties of materials in naturally tiny systems.

Already, the BYU researchers have successfully used their new technique to make chemical detection devices that can validate chemical reactions during pharmaceutical production. Team member Robert C. Davis, PhD , imagines that one day CNT-M might even play a role in devising new longer-lasting batteries.


Story Source:

The above story is based on materials provided by AVS: Science & Technology of Materials, Interfaces, and Processing. Note: Materials may be edited for content and length.


Cite This Page:

AVS: Science & Technology of Materials, Interfaces, and Processing. "Strengthening fragile forests of carbon nanotubes for new MEMS applications." ScienceDaily. ScienceDaily, 26 October 2012. <www.sciencedaily.com/releases/2012/10/121026143227.htm>.
AVS: Science & Technology of Materials, Interfaces, and Processing. (2012, October 26). Strengthening fragile forests of carbon nanotubes for new MEMS applications. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2012/10/121026143227.htm
AVS: Science & Technology of Materials, Interfaces, and Processing. "Strengthening fragile forests of carbon nanotubes for new MEMS applications." ScienceDaily. www.sciencedaily.com/releases/2012/10/121026143227.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins