Featured Research

from universities, journals, and other organizations

Super-massive black hole inflates giant bubble

Date:
October 29, 2012
Source:
Max-Planck-Institut für Astrophysik (MPA)
Summary:
Like symbiotic species, a galaxy and its central black hole lead intimately connected lives. The details of this relationship still pose many puzzles for astronomers.

This false colour image shows the galaxy M87. Optical light is shown in white/blue (SDSS), the radio emission in yellow/orange (LOFAR). At the centre, the radio emission has a very high surface brightness, showing where the jet powered by the supermassive black hole is located.
Credit: Francesco de Gasperin, on behalf of the LOFAR collaboration

Like symbiotic species, a galaxy and its central black hole lead intimately connected lives. The details of this relationship still pose many puzzles for astronomers.

Some black holes actively accrete matter. Part of this material do not fall into the black hole but is ejected in a narrow stream of particles, traveling at nearly the speed of light. When the stream slows down, it creates a tenuous bubble that can engulf the entire galaxy. Invisible to optical telescopes, the bubble is very prominent at low radio frequencies. The new International LOFAR Telescope - designed and built by ASTRON in an international collaboration - is ideally suited to detect this low frequency emission.

Astronomers have produced one of the best images ever of such a bubble, using LOFAR to detect frequencies from 20 to 160 MHz. "The result is of great importance", says Francesco de Gasperin, lead author of the study that is being published in the journal Astronomy & Astrophysics. "It shows the enormous potential of LOFAR, and provides compelling evidence of the close ties between black hole, host galaxy, and their surroundings."

The image was made during the test-phase of LOFAR, and targeted the giant elliptical galaxy Messier 87, at the centre of a galaxy cluster in the constellation of Virgo. This galaxy is 2000 times more massive than our Milky Way and hosts in its centre one of the most massive black holes discovered so far, with a mass six billion times that of our Sun. Every few minutes this black hole swallows an amount of matter similar to that of the whole Earth, converting part of it into radiation and a larger part into powerful jets of ultra-fast particles, which are responsible for the observed radio emission.

“This is the first time such high-quality images are possible at these low frequencies", says professor Heino Falcke, chairman of the board of the ILT and co-author of the study. "This was a challenging observation - we did not expect to get such fantastic results so early in the commissioning phase of LOFAR."

To determine the age of the bubble, the authors added radio observations at different frequencies from the Very Large Array in New Mexico (USA), and the Effelsberg 100-meter radio telescope near Bonn (Germany). The team found that this bubble is surprisingly young, just about 40 million years, which is a mere instant on cosmic time scales. The low frequency observation does not reveal any relic emission outside the well-confined bubble boundaries, this means that the bubble is not just a relic of an activity that happened long ago but is constantly refilled with fresh particles ejected by the central black hole.

"What is particularly fascinating", says Andrea Merloni from the Max-Planck Institute of Extraterrestrial Physics in Garching, who supervised de Gasperin's doctoral work, "is that the results also provide clues on the violent matter-to-energy conversion that occurs very close to the black hole. In this case the black hole is particularly efficient in accelerating the jet, and much less effective in producing visible emission."

Francesco de Gasperin performed the study as part of his PhD work at the Max Planck Institute for Astrophysics and at the Excellence Cluster Universe. De Gasperin is now a postdoctoral researcher at the University of Hamburg.


Story Source:

The above story is based on materials provided by Max-Planck-Institut für Astrophysik (MPA). Note: Materials may be edited for content and length.


Journal Reference:

  1. F. de Gasperin, E. Orrú, M. Murgia, A. Merloni, H. Falcke, R. Beck, R. Beswick, L. Bîrzan, A. Bonafede, M. Brüggen, G. Brunetti, K. Chyży, J. Conway, J. H. Croston, T. Enßlin, C. Ferrari, G. Heald, S. Heidenreich, N. Jackson, G. Macario, J. McKean, G. Miley, R. Morganti, A. Offringa, R. Pizzo, D. Rafferty, H. Röttgering, A. Shulevski, M. Steinmetz, C. Tasse, S. van der Tol, W. van Driel, R. J. van Weeren, J. E. van Zwieten, A. Alexov, J. Anderson, A. Asgekar, M. Avruch, M. Bell, M. R. Bell, M. Bentum, G. Bernardi, P. Best, F. Breitling, J. W. Broderick, A. Butcher, B. Ciardi, R. J. Dettmar, J. Eisloeffel, W. Frieswijk, H. Gankema, M. Garrett, M. Gerbers, J. M. Griessmeier, A. W. Gunst, T. E. Hassall, J. Hessels, M. Hoeft, A. Horneffer, A. Karastergiou, J. Köhler, Y. Koopman, M. Kuniyoshi, G. Kuper, P. Maat, G. Mann, M. Mevius, D. D. Mulcahy, H. Munk, R. Nijboer, J. Noordam, H. Paas, M. Pandey, V. N. Pandey, A. Polatidis, W. Reich, A. P. Schoenmakers, J. Sluman, O. Smirnov, C. Sobey, B. Stappers, J. Swinbank, M. Tagger, Y. Tang, I. van Bemmel, W. van Cappellen, A. P. van Duin, M. van Haarlem, J. van Leeuwen, R. Vermeulen, C. Vocks, S. White, M. Wise, O. Wucknitz, P. Zarka. M 87 at metre wavelengths: the LOFAR picture. Astronomy & Astrophysics, 2012; 547: A56 DOI: 10.1051/0004-6361/201220209

Cite This Page:

Max-Planck-Institut für Astrophysik (MPA). "Super-massive black hole inflates giant bubble." ScienceDaily. ScienceDaily, 29 October 2012. <www.sciencedaily.com/releases/2012/10/121029081835.htm>.
Max-Planck-Institut für Astrophysik (MPA). (2012, October 29). Super-massive black hole inflates giant bubble. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2012/10/121029081835.htm
Max-Planck-Institut für Astrophysik (MPA). "Super-massive black hole inflates giant bubble." ScienceDaily. www.sciencedaily.com/releases/2012/10/121029081835.htm (accessed October 22, 2014).

Share This



More Space & Time News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) — Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) — The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins