Featured Research

from universities, journals, and other organizations

World record for entanglement of twisted light quanta

Date:
November 2, 2012
Source:
University of Vienna
Summary:
Physicists have achieved a new milestone in the history of quantum physics: Scientists were able to generate and measure the entanglement of the largest quantum numbers to date.

A long-exposure photo of laser light in 'donut modes' (light beams with no intensity in the middle).
Credit: Robert Fickler, University of Vienna

The Vienna research team led by Anton Zeilinger has achieved a new milestone in the history of quantum physics: The scientists were able to generate and measure the entanglement of the largest quantum numbers to date.

To this end, the researchers developed a new method for entangling single photons which gyrate in opposite directions. This result is a first step towards entangling and twisting even macroscopic, spatially separated objects in two different directions. The researchers at the Vienna Center for Quantum Science and Technology (VCQ), situated at the University of Vienna, and the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences have were able to get their pioneering results published in the current issue of the scientific journal Science.

Quantum physics is usually considered to be the theory of extremely lightweight objects, such as atoms or photons, or of exceptionally small units, namely very small quantum numbers. One of the most fascinating phenomena of quantum physics is that of entanglement. Entangled quanta of light behave as if able to influence each other -- even as they are spatially separated. The question of whether or not entanglement is limited to tiny objects or very small quantum numbers came up already in the early days of quantum physics. Now, the Vienna group has taken the first step for testing quantum mechanical entanglement with rotating photons. To illustrate, a quantum mechanical figure skater would have the uncanny ability to pirouette both clockwise and counter-clockwise simultaneously. Moreover, the direction of her rotations would be correlated with the twirls of another, entangled, skater -- even if the two ice dancers whirl far removed from each other, in ice rinks on different continents. The faster the two quantum skaters pirouette, the larger is the quantum number of their rotation direction, the so-called angular momentum. "In our experiment, we entangled the largest quantum numbers of any kind of particle ever measured," declares Zeilinger with a wry smile.

Could quantum ice dancers exist in reality?

It has been common knowledge for about 20 years now that theoretically, there is no upper limit for the angular momentum of photons. Previous experiments, however, have been limited, due to physical restrictions, to very weak angular momentum and small quantum numbers. In the Vienna experiment, it is theoretically possible to create entanglement regardless of the strength of the angular momentum or the scale of its quantum number. "Only our limited technical means stop us from creating entanglement with twisted photons that could be sensed even with bare hands," states Robert Fickler, the main author of the current Science publication. And so, the researchers have demonstrated that it is possible in principle to twirl entangled ice skaters simultaneously both in clockwise and counter-clockwise directions. In practice, a number of major challenges need to be addressed before such an experiment can be realized with macroscopic objects.

From fundamental research to technical applications

In addition to the fundamental issue of the limits of macroscopic entanglement, the physicists address possibilities of potential applications. They are, for example, able to use the created photons for very precise angular measurements already at low intensities of light. This feature is of advantage in particular when investigating light sensitive materials, as for example some biological substances. "The special features of entanglement provide the fantastic possibility to perform such measurements from arbitrary distances and without any contact whatsoever with the measured object, or even at a point in time that lies in the future!" Fickler explains.

This research was supported by the European Research Council (ERC) and the Austrian Science Fund (FWF).


Story Source:

The above story is based on materials provided by University of Vienna. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, A. Zeilinger. Quantum Entanglement of High Angular Momenta. Science, 2012; 338 (6107): 640 DOI: 10.1126/science.1227193

Cite This Page:

University of Vienna. "World record for entanglement of twisted light quanta." ScienceDaily. ScienceDaily, 2 November 2012. <www.sciencedaily.com/releases/2012/11/121102115344.htm>.
University of Vienna. (2012, November 2). World record for entanglement of twisted light quanta. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2012/11/121102115344.htm
University of Vienna. "World record for entanglement of twisted light quanta." ScienceDaily. www.sciencedaily.com/releases/2012/11/121102115344.htm (accessed September 1, 2014).

Share This




More Computers & Math News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Apple's Rumored iWatch Could Cost $400

Apple's Rumored iWatch Could Cost $400

Newsy (Aug. 31, 2014) Apple is expected to charge a premium for its still-rumored wearable device. Video provided by Newsy
Powered by NewsLook.com
Amazon Chases Netflix And HBO With Five New Pilots

Amazon Chases Netflix And HBO With Five New Pilots

Newsy (Aug. 31, 2014) Amazon has released another batch of five pilots, allowing viewers to vote on which shows will get full seasons on the company's streaming service. Video provided by Newsy
Powered by NewsLook.com
Apple Wants Your iPhone To Become Your Wallet

Apple Wants Your iPhone To Become Your Wallet

Newsy (Aug. 31, 2014) Apple might soon announce a feature that would allow iPhones to act as a credit card when making payments in physical stores. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins