Featured Research

from universities, journals, and other organizations

Researchers make strides toward selective oxidation catalysts

Date:
November 5, 2012
Source:
Northwestern University
Summary:
Solid catalysts tend to be highly reactive, but more efficient chemical processes require that catalysts be more scrupulous about their reactants. Now researchers have a new method for making selective oxidation catalysts, a step that could lead to greener energy.

Oxide catalysts, typically formulated as powders, play an integral role in many chemical transformations, including cleaning wastewater, curbing tailpipe emissions, and synthesizing most consumer products.

Related Articles


Greener, more efficient chemical processes would benefit greatly from solid oxide catalysts that are choosier about their reactants, but achieving this has proven a challenge. Now researchers from Northwestern University and Argonne National Laboratory have developed a straightforward and generalizable process for making reactant-selective oxide catalysts by encapsulating the particles in a sieve-like film that blocks unwanted reactants.

The process could find applications in energy, particularly the conversion of biomass into sugars and then fuels and other useful chemicals.

A paper detailing the research, "Shape-selective Sieving Layers on an Oxide Catalyst Surface," was published Oct. 28 in the journal Nature Chemistry.

Especially for selective oxidation, "The ability to conduct these reactions in a selective way opens doors to new applications in green chemistry and sustainability," said Justin Notestein, assistant professor of chemical and biological engineering at Northwestern's McCormick School of Engineering and the paper's corresponding author. "Unlike current processes, which may require enzymes or precious metals, our method relies only on harmless, inert oxides. These are powders you can hold in your hand."

In testing their method, the researchers focused on photocatalytic oxidations such as the conversion of benzyl alcohol into benzaldehydes, reactions that are notoriously unselective. The researchers coated a core particle of titanium dioxide, a harmless white pigment, with a nanometer-thick film of aluminum oxide. They used a synthesis method that resulted in a film pitted with tiny holes they dubbed "nanocavities," less than two nanometers in diameter.

This sieve-like coating allowed only the smaller reactants in a mixture to slip through the holes and react with the titanium oxide, while larger reactants were blocked. The result was much higher selectivity (up to 9:1) toward the less hindered reactants.

The process was conducted at room temperature and required only a low-power light source, whereas other catalysts may require precious metals or hazardous oxidants.

In addition to Notestein, other Northwestern authors of the paper include Richard P. Van Duyne, professor of chemistry in Northwestern's Weinberg College of Arts and Sciences; Peter C. Stair, professor and chair of the chemistry department in Weinberg; postdoctoral researcher Christian P. Canlas; PhD candidate Natalie A. Ray; and undergraduate Nicolas A. Grosso-Giordano. From Argonne National Laboratory, authors include Junling Lu, Sungsik Kee, Jeffrey W. Elam, and Randall E. Winans.

The research was conducted in collaboration with the Institute for Atom-Efficient Chemical Transformations, a Department of Energy Energy Frontier Research Center that also includes members from Purdue University and the University of Wisconsin.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christian P. Canlas, Junling Lu, Natalie A. Ray, Nicolas A. Grosso-Giordano, Sungsik Lee, Jeffrey W. Elam, Randall E. Winans, Richard P. Van Duyne, Peter C. Stair, Justin M. Notestein. Shape-selective sieving layers on an oxide catalyst surface. Nature Chemistry, 2012; DOI: 10.1038/nchem.1477

Cite This Page:

Northwestern University. "Researchers make strides toward selective oxidation catalysts." ScienceDaily. ScienceDaily, 5 November 2012. <www.sciencedaily.com/releases/2012/11/121105114701.htm>.
Northwestern University. (2012, November 5). Researchers make strides toward selective oxidation catalysts. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2012/11/121105114701.htm
Northwestern University. "Researchers make strides toward selective oxidation catalysts." ScienceDaily. www.sciencedaily.com/releases/2012/11/121105114701.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins