Featured Research

from universities, journals, and other organizations

Cells from skin create model of blinding eye disease

Date:
November 8, 2012
Source:
University of Wisconsin-Madison
Summary:
For the first time, researchers have taken skin from patients and, using induced pluripotent stem cell (iPSC) technology, turned them into a laboratory model for an inherited type of macular degeneration.

For the first time, Wisconsin researchers have taken skin from patients and, using induced pluripotent stem cell (iPSC) technology, turned them into a laboratory model for an inherited type of macular degeneration.

Dr. David Gamm, director of the UW's McPherson Eye Research Institute, said that while Best disease is relatively rare, having a patient-specific model of the eye disease, which destroys the macula of the retina, could lead to a greater understanding of more common eye disorders such as age-related macular degeneration.

"This model gives us a chance to understand the biological effects of human gene mutations in a relatively expeditious manner,'' says Gamm, associate professor of ophthalmology and visual sciences and pediatrics. "Ultimately, we hope the model will help us craft treatments to slow or reverse the course of Best Disease."

Gamm and lead researchers Dr. Ruchira Singh and Dr. Wei Shen, all members of the UW's Waisman Center, took skin samples from members of two Chicago-area families with Best disease. Children in those families have a 50-percent chance of inheriting the gene that causes the disease, which begins destroying the macula as early as age three. Using samples of affected and unaffected siblings, they turned the skin into stem cells, then into retinal pigment epithelium, the cells of the eye that are affected by the disease.

In the laboratory dish, they were able to track the changes that underlie a lesion on the retina that resembles "egg yolk," and progresses to a stage called "scrambled egg," which destroys the central vision.

The UW model revealed some of the cellular processes causing the disease. The models of the Best disease patients showed a buildup of fluid and old photoreceptor cells, indicating something gone wrong with the ability to degrade and remove debris such as dead cells. On a molecular level, the Best cells were slow to degrade rhodopsin, a biological pigment in photoreceptor cells, and had differences in calcium signaling and oxidative stress.

"These results give us some ideas where to look for therapies that would allow us to interfere with the disease process,'' says Gamm. "And the stem cell model gives us a chance to test those therapies before trying them on patients."

Even more important, on a human level, is how excited some of the family members were to participate in understanding and eventually treating a disease that has plagued generations of their families.

"These family members know they're not getting treated directly as a result of this study, but they're doing it out of concern for the next generation,'' Gamm said. "That brings peace to them, to know that they're not passive victims of this disease, but instead, active players in the discovery process."

The chief research officer of the Foundation Fighting Blindness, which helped fund the Best disease project, says the method holds promise for a number of retinal conditions.

"We are delighted by the highly innovative research of Dr. Gamm and his lab in harnessing stem cells to better understand complex retinal diseases and move us closer to vision-saving treatments and cures,'' says Dr. Stephen Rose. "His techniques can be used to help characterize and overcome the entire spectrum of inherited retinal conditions."


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ruchira Singh, Wei Shen, David Kuai, Jessica M. Martin, Xiangrong Guo, Molly A. Smith, Enio T. Perez, Michael J. Phillips, Joseph M. Simonett, Kyle A. Wallace, Amelia D. Verhoeven, Elizabeth E. Capowski, Xiaoqing Zhang, Yingnan Yin, Patrick J. Halbach, Gerald A. Fishman, Lynda S. Wright, Bikash R. Pattnaik, and David M. Gamm. iPS cell modeling of Best disease: Insights into the pathophysiology of an inherited macular degeneration. Hum. Mol. Genet., November 8, 2012 DOI: 10.1093/hmg/dds469

Cite This Page:

University of Wisconsin-Madison. "Cells from skin create model of blinding eye disease." ScienceDaily. ScienceDaily, 8 November 2012. <www.sciencedaily.com/releases/2012/11/121108104231.htm>.
University of Wisconsin-Madison. (2012, November 8). Cells from skin create model of blinding eye disease. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2012/11/121108104231.htm
University of Wisconsin-Madison. "Cells from skin create model of blinding eye disease." ScienceDaily. www.sciencedaily.com/releases/2012/11/121108104231.htm (accessed September 30, 2014).

Share This



More Health & Medicine News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Positive Ebola News: Outbreak 'Contained' In Nigeria

Some Positive Ebola News: Outbreak 'Contained' In Nigeria

Newsy (Sep. 30, 2014) The CDC says a new case of Ebola has not been reported in Nigeria for more than 21 days, leading to hopes the outbreak might be nearing its end. Video provided by Newsy
Powered by NewsLook.com
UN Ebola Mission Head: Immediate Action Is Crucial

UN Ebola Mission Head: Immediate Action Is Crucial

AFP (Sep. 30, 2014) The newly appointed head of the United Nations Mission for Ebola Emergency Response (UNMEER), Anthony Banbury, outlines operations to tackle the virus. Duration: 00:39 Video provided by AFP
Powered by NewsLook.com
CDC Confirms First Case of Ebola in US

CDC Confirms First Case of Ebola in US

AP (Sep. 30, 2014) The CDC has confirmed the first diagnosed case of Ebola in the United States. The patient is being treated at a Dallas hospital after traveling earlier this month from Liberia. (Sept. 30) Video provided by AP
Powered by NewsLook.com
New Breast Cancer Drug Extends Lives In Clinical Trial

New Breast Cancer Drug Extends Lives In Clinical Trial

Newsy (Sep. 30, 2014) In a clinical trial, breast cancer patients lived an average of 15 months longer when they received new drug Perjeta along with Herceptin. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins