Featured Research

from universities, journals, and other organizations

Understanding antibiotic resistance using crystallography and computation

Date:
November 9, 2012
Source:
University of Bristol
Summary:
Scientists have solved the structure of an enzyme that breaks down carbapenems , antibiotics 'of last resort' which, until recently, were kept in reserve for serious infections that failed to respond to other treatments.

Two structural 'snapshots' showing the carbapenem antibiotic meropenem bound to the SFC-1 enzyme. Top panel shows intact antibiotic; bottom panel shows an intermediate step in breakdown of the drug. The position of the antibiotic is indicated by the green mesh.
Credit: Dr Jim Spencer

Scientists at the University of Bristol, together with collaborators at the University of Aveiro, Portugal, have solved the structure of an enzyme that breaks down carbapenems , antibiotics 'of last resort' which, until recently, were kept in reserve for serious infections that failed to respond to other treatments.

Increasingly, bacteria such as E. coli are resisting the action of carbapenems by producing enzymes (carbapenemases) that break a specific chemical bond in the antibiotic, destroying its antimicrobial activity.

Carbapenemases are members of the group of enzymes called beta-lactamases that break down penicillins and related antibiotics, but it has not been clear why carbapenemases can destroy carbapenems while other beta-lactamases cannot.

Using molecular dynamics simulations, Professor Adrian Mulholland in the School of Chemistry and Dr Jim Spencer in the School of Cellular and Molecular Medicine, showed how a particular type of carbapenemase enzyme reorients bound antibiotic to promote its breakdown and render it ineffective.

Professor Mulholland said: "The class of antibiotics called carbapenems, drugs related to penicillin, are increasingly important in healthcare as treatments for bacterial infections. Until recently, carbapenems were 'antibiotics of last resort' but the growing problem of resistance to other drugs in organisms like E. coli (the leading cause of bloodstream infections in the UK) means that carbapenems are now becoming first-choice antibiotics for these infections. This is a worry because there are very few other treatment options for these organisms. Few new antibiotics effective against these pathogens are reaching the clinic.

"The recent appearance and spread of bacteria that resist carbapenems is a serious and growing problem: potentially, we could be left with no effective antibiotic treatments for these infections. The emergence of bacteria that resist carbapenems is therefore very worrying."

In a study published in the Journal of the American Chemical Society (JACS), the scientists combined laboratory experiments with computer simulations to investigate how one particular type of carbapenemase recognises and breaks down antibiotics.

Using X-ray crystallography, they obtained two 'snapshots' of the carbapenemase in the act of breaking down a carbapenem antibiotic. This static structural information was used as a starting point for simulations that modelled the motions of the enzyme and the bound antibiotic.

The simulations showed how the carbapenemase reorients the drug to promote its breakdown. In beta-lactamases that cannot break down carbapenems, this rearrangement cannot happen, and so the enzyme cannot break down the antibiotic. Knowing this should help in designing new drugs that can resist being broken down.

Dr Spencer said: "Combining laboratory and computational techniques in this way gave us a full picture of the origins of antibiotic resistance. Our crystallographic results provided structures which were the essential starting point for the simulations and the simulations were key to understanding the dynamic behaviour of the enzyme-bound drug.

"Identifying the molecular interactions that make an enzyme able to break down the drug, as we have done here, is an important first step towards modifying the drug to overcome bacterial antibiotic resistance."


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fαtima Fonseca, Ewa I. Chudyk, Marc W. van der Kamp, Antσnio Correia, Adrian J. Mulholland, James Spencer. The Basis for Carbapenem Hydrolysis by Class A β-Lactamases: A Combined Investigation using Crystallography and Simulations. Journal of the American Chemical Society, 2012; 134 (44): 18275 DOI: 10.1021/ja304460j

Cite This Page:

University of Bristol. "Understanding antibiotic resistance using crystallography and computation." ScienceDaily. ScienceDaily, 9 November 2012. <www.sciencedaily.com/releases/2012/11/121109111519.htm>.
University of Bristol. (2012, November 9). Understanding antibiotic resistance using crystallography and computation. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/11/121109111519.htm
University of Bristol. "Understanding antibiotic resistance using crystallography and computation." ScienceDaily. www.sciencedaily.com/releases/2012/11/121109111519.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) — An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) — A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) — ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins