Featured Research

from universities, journals, and other organizations

Powering lasers through heat

Date:
November 13, 2012
Source:
University of Innsbruck
Summary:
In micro electronics heat often causes problems and engineers have to put a lot of technical effort into cooling, for example micro chips, to dissipate heat that is generated during operation. Physicists have now suggested a concept for a laser that could be powered by heat. This idea may open a completely new way for cooling microchips.

Schematic picture of a quantum cascade laser. The layers of different semiconductor material constitute the bandstructure shown in the inset.
Credit: Graphics: Christoph Deutsch

In micro electronics heat often causes problems and engineers have to put a lot of technical effort into cooling, for example micro chips, to dissipate heat that is generated during operation. Innsbruck physicists have now suggested a concept for a laser that could be powered by heat. This idea may open a completely new way for cooling microchips.

Since its invention 50 years ago, laser light has conquered our daily life. Lasers of varying wave lengths and power are used in many parts of our life, from consumer electronics to telecommunication and medicine. However, not all wave lengths have been equally well researched. For the far infrared and terahertz regime quantum cascade lasers are the most important source of coherent radiation. Light amplification in such a cascade laser is achieved through a repeated pattern of specifically designed semi-conductor layers of diverse doping through which electric current is running. "The electrons are transferred through this structure in a specific series of tunneling processes and quantum leaps, emitting coherent light particles," explains Helmut Ritsch, Institute for Theoretical Physics, University of Innsbruck, the functioning of such a laser. "Between these layers the electrons collide with other particles, which heats the laser." Thus, quantum cascade lasers only work as long as they are strongly cooled. When too much heat is produced, the laser light extinguishes.

Revolutionary concept

When looking for ways to reduce heat in lasers, PhD student Kathrin Sandner and Helmut Ritsch came up with a revolutionary idea: The theoretical physicists suggest using heat to power the laser. In their work, recently published in Physical Review Letters, the two physicists propose the theory that the heating effect in quantum cascade lasers could not only be avoided but, in fact, reversed through a cleverly-devised modification of the thickness of the semiconductor layers. "A crucial part is to spatially separate the cold and warm areas in the laser," explains Kathrin Sandner. "In such a temperature gradient driven laser, electrons are thermally excited in the warm area and then tunnel into the cooler area where photons are emitted."

This produces a circuit where light particles are emitted and heat is absorbed from the system simultaneously. "Between the consecutive emissions of light particles a phonon is absorbed and the laser is cooled. When we develop this idea further, we see that the presence of phonons may be sufficient to provide the energy for laser amplification," says Kathrin Sandner. Such a laser could be powered without using electric current. "Of course, it is quite a challenge to implement this concept in an experiment," says Helmut Ritsch. "But if we are successful, it will be a real technological innovation." The physical principle behind the idea could already be applied to existing quantum cascade lasers, where it could provide internal cooling. This simplified concept seems to be technically feasible and is already being examined by experimental physicists.

Elegant idea with technical potential

"Apart from the conceptual elegance of this idea, a completely new way may open up of using heat in microchips in a beneficial way instead of having to dissipate it by cooling," says an excited Helmut Ritsch about the work of his student. Kathrin Sandner majored in physics in Freiburg, Germany, and has worked as a researcher at the Institute for Theoretical Physics, University of Innsbruck, since 2009. "If you want to do research in quantum optics, Innsbruck is the place to go," says Sandner about her motivation to work in Innsbruck. Kathrin Sandner was supported by the DOC-fFORTE doctoral program of the Austrian Academy of Sciences and by a PhD grant from the University of Innsbruck. She is about to finish her PhD program.


Story Source:

The above story is based on materials provided by University of Innsbruck. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Sandner, H. Ritsch. Temperature Gradient Driven Lasing and Stimulated Cooling. Physical Review Letters, 2012; 109 (19) DOI: 10.1103/PhysRevLett.109.193601

Cite This Page:

University of Innsbruck. "Powering lasers through heat." ScienceDaily. ScienceDaily, 13 November 2012. <www.sciencedaily.com/releases/2012/11/121113083534.htm>.
University of Innsbruck. (2012, November 13). Powering lasers through heat. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2012/11/121113083534.htm
University of Innsbruck. "Powering lasers through heat." ScienceDaily. www.sciencedaily.com/releases/2012/11/121113083534.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins