Featured Research

from universities, journals, and other organizations

Paper-and-scissors technique rocks the nano world: Future nanofluidic devices for batteries, water purification systems

Date:
November 14, 2012
Source:
Northwestern University
Summary:
Sometimes simplicity is best. Researchers have discovered an easy way to make nanofluidic devices: using paper and scissors. And they can cut a device into any shape and size, adding to the method's versatility. Nanofluidic devices are attractive because their thin channels can transport ions -- and with them a higher than normal electric current -- making them promising for use in batteries and new systems for water purification, harvesting energy and DNA sorting.

Sometimes simplicity is best. Two Northwestern University researchers have discovered a remarkably easy way to make nanofluidic devices: using paper and scissors. And they can cut a device into any shape and size they want, adding to the method's versatility.

Related Articles


Nanofluidic devices are attractive because their thin channels can transport ions -- and with them a higher than normal electric current -- making the devices promising for use in batteries and new systems for water purification, harvesting energy and DNA sorting.

The "paper-and-scissors" method one day could be used to manufacture large-scale nanofluidic devices without relying on expensive lithography techniques.

The Northwestern duo found that simply stacking up sheets of the inexpensive material graphene oxide creates flexible "paper" with tens of thousands of very useful channels. A tiny gap forms naturally between neighboring sheets, and each gap is a channel through which ions can flow.

Using a pair of regular scissors, the researchers simply cut the paper into a desired shape, which, in the case of their experiments, was a rectangle.

"In a way, we were surprised that these nanochannels actually worked, because creating the device was so easy," said Jiaxing Huang, who conducted the research with postdoctoral fellow Kalyan Raidongia. "No one had thought about the space between sheet-like materials before. Using the space as a flow channel was a wild idea. We ran our experiment at least 10 times to be sure we were right."

Huang is an assistant professor of materials science and engineering and the Morris E. Fine Junior Professor in Materials and Manufacturing in the McCormick School of Engineering and Applied Science.

"Many people have studied graphene oxide papers but mainly for their mechanical properties or for making graphene," Huang said. "Here we show that graphene oxide paper naturally generates numerous nanofluidic ion channels when layered."

The findings are published in the Journal of the American Chemical Society.

To create a working device, the researchers took a pair of scissors and cut a piece of their graphene oxide paper into a centimeter-long rectangle. They then encased the paper in a polymer, drilled holes to expose the ends of the rectangular piece and filled up the holes with an electrolyte solution (a liquid containing ions) to complete the device.

Next they put electrodes at both ends and tested the electrical conductivity of the device. Huang and Raidongia observed higher than normal current, and the device worked whether flat or bent.

The nanochannels have significantly different -- and desirable -- properties from their bulk channel counterparts, Huang said. The nanochannels have a concentrating effect, resulting in an electric current much higher than those in bulk solutions.

Graphene oxide is basically graphene sheets decorated with oxygen-containing groups. It is made from inexpensive graphite powders by chemical reactions known for more than a century.

Scaling up the size of the device is simple. Tens of thousands of sheets or layers create tens of thousands of nanochannels, each channel approximately one nanometer high. There is no limit to the number of layers -- and thus channels -- one can have in a piece of paper.

To manufacture very massive arrays of channels, one only needs to put more graphene oxide sheets in the paper or to stack up many pieces of paper. A larger device, of course, can handle larger quantities of electrolyte.


Story Source:

The above story is based on materials provided by Northwestern University. The original article was written by Megan Fellman. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kalyan Raidongia, Jiaxing Huang. Nanofluidic Ion Transport through Reconstructed Layered Materials. Journal of the American Chemical Society, 2012; 134 (40): 16528 DOI: 10.1021/ja308167f

Cite This Page:

Northwestern University. "Paper-and-scissors technique rocks the nano world: Future nanofluidic devices for batteries, water purification systems." ScienceDaily. ScienceDaily, 14 November 2012. <www.sciencedaily.com/releases/2012/11/121114172931.htm>.
Northwestern University. (2012, November 14). Paper-and-scissors technique rocks the nano world: Future nanofluidic devices for batteries, water purification systems. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2012/11/121114172931.htm
Northwestern University. "Paper-and-scissors technique rocks the nano world: Future nanofluidic devices for batteries, water purification systems." ScienceDaily. www.sciencedaily.com/releases/2012/11/121114172931.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins