Featured Research

from universities, journals, and other organizations

Invisibility cloaking to shield floating objects from waves

Date:
November 19, 2012
Source:
American Physical Society's Division of Fluid Dynamics
Summary:
A new approach to invisibility cloaking may one day be used at sea to shield floating objects – such as oil rigs and ships – from rough waves. Unlike most other cloaking techniques that rely on transformation optics, this one is based on the influence of the ocean floor’s topography on the various “layers” of ocean water. At the American Physical Society’s (APS) Division of Fluid Dynamics (DFD) meeting, being held November 18-20, 2012, in San Diego, Calif., Reza Alam, assistant professor of mechanical engineering at the University of California, Berkeley, will describe how the variation of density in ocean water can be used to cloak floating objects against incident surface waves.

Wrecked ship. A new approach to invisibility cloaking may one day be used at sea to shield floating objects -- such as oil rigs and ships -- from rough waves. Unlike most other cloaking techniques that rely on transformation optics, this one is based on the influence of the ocean floor's topography on the various "layers" of ocean water.
Credit: © jo / Fotolia

A new approach to invisibility cloaking may one day be used at sea to shield floating objects -- such as oil rigs and ships -- from rough waves. Unlike most other cloaking techniques that rely on transformation optics, this one is based on the influence of the ocean floor's topography on the various "layers" of ocean water.

At the American Physical Society's (APS) Division of Fluid Dynamics (DFD) meeting, being held November 18-20, 2012, in San Diego, Calif., Reza Alam, assistant professor of mechanical engineering at the University of California, Berkeley, will describe how the variation of density in ocean water can be used to cloak floating objects against incident surface waves.

"The density of water in an ocean or sea typically isn't constant, mainly because of variations in temperature and salinity," explains Alam. "Solar radiation heats the upper layer of the water, and the flow of rivers and the melting of ice lowers the water density near the surface. Over time, these effects add up to form a stable density stratification of two layers -- with the lighter fluid layer on top and the more dense fluid layer below it."

Stratified waters, much like regular surface waves, contain "internal waves," which are gravity waves that propagate between the two layers of water. For the same frequency of oscillation, however, internal waves travel at a much shorter wavelength and slower speed than surface waves.

Both wave types "feel" the ocean floor's influence, which generates an energy transfer.

Zeroing in on this energy transfer, Alam used computer simulations to transform a surface wave into internal wave as it approaches an object -- meaning that the wave will pass beneath the object rather than crashing into it. And once the internal wave moves beyond the object, it can be transformed back into a surface wave.

This would be achieved by creating "corrugations" or wavy ripples that are tuned to a specific wavelength on the ocean floor in front of the floating object to be cloaked.

"Cloaking in seas by modifying the floor may play a role in protecting near-shore or offshore structures and in creating shelter for fishermen during storms," says Alam. "In reverse, it can cause the disappearance and reappearance of surface waves in areas where sandbars or any other appreciable bottom variations exist."


Story Source:

The above story is based on materials provided by American Physical Society's Division of Fluid Dynamics. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society's Division of Fluid Dynamics. "Invisibility cloaking to shield floating objects from waves." ScienceDaily. ScienceDaily, 19 November 2012. <www.sciencedaily.com/releases/2012/11/121119104529.htm>.
American Physical Society's Division of Fluid Dynamics. (2012, November 19). Invisibility cloaking to shield floating objects from waves. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/11/121119104529.htm
American Physical Society's Division of Fluid Dynamics. "Invisibility cloaking to shield floating objects from waves." ScienceDaily. www.sciencedaily.com/releases/2012/11/121119104529.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins