Featured Research

from universities, journals, and other organizations

Flexible, low-voltage circuits made using nanocrystals

Date:
November 26, 2012
Source:
University of Pennsylvania
Summary:
Electronic circuits are typically integrated in rigid silicon wafers, but flexibility opens up a wide range of applications in a world where electronics are becoming more pervasive. Finding materials with the right mix of performance and manufacturing cost, however, remains a challenge. Now researchers have shown that nanoscale particles, or nanocrystals, of the semiconductor cadmium selenide can be "printed" or "coated" on flexible plastics to form high-performance electronics.

Flexible circuit fabricated in the Kagan lab.
Credit: David Kim and Yuming Lai

Electronic circuits are typically integrated in rigid silicon wafers, but flexibility opens up a wide range of applications. In a world where electronics are becoming more pervasive, flexibility is a highly desirable trait, but finding materials with the right mix of performance and manufacturing cost remains a challenge.

Now a team of researchers from the University of Pennsylvania has shown that nanoscale particles, or nanocrystals, of the semiconductor cadmium selenide can be "printed" or "coated" on flexible plastics to form high-performance electronics.

The research was led by David Kim, a doctoral student in the Department of Materials Science and Engineering in Penn's School of Engineering and Applied Science; Yuming Lai, a doctoral student in the Engineering School's Department of Electrical and Systems Engineering; and professor Cherie Kagan, who has appointments in both departments as well as in the School of Arts and Sciences' Department of Chemistry. Benjamin Diroll, a doctoral student in chemistry, and Penn Integrates Knowledge Professor Christopher Murray of Materials Science and of Chemistry also collaborated on the research.

Their work was published in the journal Nature Communications.

"We have a performance benchmark in amorphous silicon, which is the material that runs the display in your laptop, among other devices," Kagan said. "Here, we show that these cadmium selenide nanocrystal devices can move electrons 22 times faster than in amorphous silicon."

Besides speed, another advantage cadmium selenide nanocrystals have over amorphous silicon is the temperature at which they are deposited. Whereas amorphous silicon uses a process that operates at several hundred degrees, cadmium selenide nanocrystals can be deposited at room temperature and annealed at mild temperatures, opening up the possibility of using more flexible plastic foundations.

Another innovation that allowed the researchers to use flexible plastic was their choice of ligands, the chemical chains that extend from the nanocrystals' surfaces and helps facilitate conductivity as they are packed together into a film.

"There have been a lot of electron transport studies on cadmium selenide, but until recently we haven't been able to get good performance out of them," Kim said. "The new aspect of our research was that we used ligands that we can translate very easily onto the flexible plastic; other ligands are so caustic that the plastic actually melts."

Because the nanocrystals are dispersed in an ink-like liquid, multiple types of deposition techniques can be used to make circuits. In their study, the researchers used spincoating, where centrifugal force pulls a thin layer of the solution over a surface, but the nanocrystals could be applied through dipping, spraying or ink-jet printing as well.

On a flexible plastic sheet a bottom layer of electrodes was patterned using a shadow mask -- essentially a stencil -- to mark off one level of the circuit. The researchers then used the stencil to define small regions of conducting gold to make the electrical connections to upper levels that would form the circuit. An insulating aluminum oxide layer was introduced and a 30-nanometer layer of nanocrystals was coated from solution. Finally, electrodes on the top level were deposited through shadow masks to ultimately form the circuits.

"The more complex circuits are like buildings with multiple floors," Kagan said. "The gold acts like staircases that the electrons can use to travel between those floors."

Using this process, the researchers built three kinds of circuits to test the nanocrystals performance for circuit applications: an inverter, an amplifier and a ring oscillator.

"An inverter is the fundamental building block for more complex circuits," Lai said. "We can also show amplifiers, which amplify the signal amplitude in analog circuits, and ring oscillators, where 'on' and 'off' signals are properly propagating over multiple stages in digital circuits."

"And all of these circuits operate with a couple of volts," Kagan said. "If you want electronics for portable devices that are going to work with batteries, they have to operate at low voltage or they won't be useful."

With the combination of flexibility, relatively simple fabrication processes and low power requirements, these cadmium selenide nanocrystal circuits could pave the way for new kinds of devices and pervasive sensors, which could have biomedical or security applications.

"This research also opens up the possibility of using other kinds of nanocrystals, as we've shown the materials aspect is not a limitation any more," Kim said.

The research was supported by the U.S. Department of Energy and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Journal Reference:

  1. David K. Kim, Yuming Lai, Benjamin T. Diroll, Christopher B. Murray, Cherie R. Kagan. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nature Communications, 2012; 3: 1216 DOI: 10.1038/ncomms2218

Cite This Page:

University of Pennsylvania. "Flexible, low-voltage circuits made using nanocrystals." ScienceDaily. ScienceDaily, 26 November 2012. <www.sciencedaily.com/releases/2012/11/121126143001.htm>.
University of Pennsylvania. (2012, November 26). Flexible, low-voltage circuits made using nanocrystals. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/11/121126143001.htm
University of Pennsylvania. "Flexible, low-voltage circuits made using nanocrystals." ScienceDaily. www.sciencedaily.com/releases/2012/11/121126143001.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins