Featured Research

from universities, journals, and other organizations

Researchers increase understanding of genetic risk factor for type 1 diabetes

Date:
November 28, 2012
Source:
Joslin Diabetes Center
Summary:
Researchers have demonstrated how a genetic variant associated with type 1 diabetes and other autoimmune diseases influences susceptibility to autoimmunity.

As part of their ongoing research on the role of genes in the development of type 1 diabetes, Joslin Diabetes Center scientists, in collaboration with scientists at the University of Wόrzburg, have demonstrated how a genetic variant associated with type 1 diabetes and other autoimmune diseases influences susceptibility to autoimmunity. The findings appear in the upcoming issue of Diabetes.

Related Articles


Recent studies of the human genome have identified genetic regions associated with autoimmune diseases such as type 1 diabetes. Joslin scientists in the Section of Immunobiology seek to understand how genes that are most widely associated with various autoimmune diseases contribute to disease risk.

One of these genes is PTPN22, which plays a role in lymphocyte (immune cell) function. A PTPN22 variant (or mutation) has been implicated as a risk factor for type 1 diabetes and several other autoimmune disorders. PTPN22 is involved in the formation of a key protein known as lymphoid tyrosine phosphatase (LYP), which helps control the activity of T and B cells in the immune system. The PTPN22 mutation generates a variation of LYP with a different molecular structure.

Most studies of the PTPN22 disease variant have suggested that this variant is a gain-of-function genetic mutation that enhances LYP activity and lessens the activity of T and B cells, which increases susceptibility to autoimmunity. "When immune cells are less reactive during the maturation phase of their development, the cells can evade mechanisms that help protect against autoimmunity," says study lead author Stephan Kissler, PhD, of the Section of Immunobiology. However, one study which analyzed data from humans and genetically modified mice suggested that the LYP variant associated with type 1 diabetes is a loss-of-function mutation that reduces LYP activity.

To help resolve the conflicting data, Joslin scientists conducted studies with a unique mouse model developed by Dr. Kissler's graduate student and co-author, Peilin Zheng. Using a technology that combines RNA interference, a method to silence gene expresson, with lentiviral transgenesis, a method to genetically modify animals, the scientists can manipulate gene activity in the most widely used mouse model for type 1 diabetes, the nonobese diabetic mouse (NOD). In this study, the researchers were able to easily turn off and on the PTPN22 gene in the NOD mouse. "We are the first to use this approach in the NOD mouse model," says Dr. Kissler. "It provides a very powerful way to study the contribution of PTPN22 to disease."

When PTPN22 was turned off in mice, mimicking a loss-of-function mutation, the researchers observed an increase in regulatory T cells and a decreased risk of autoimmune diabetes. "This is the first study conducted on the diabetic mouse model that supports the LYP gain-of-function hypothesis," says Dr. Kissler. "Our work should help to resolve the controversy."

By providing additional data that suggests the potential therapeutic value of PTPN22 manipulation, the study may further the development of new therapeutic options that inhibit LYP to reduce or prevent autoimmunity. "Our goal is to treat autoimmunity. Inhibiting LYP in patients may increase regulatory immune cells and could confer protection against autoimmunity, but it remains to be tested if our promising findings in this mouse model are reflected in humans," says Dr. Kissler.

The Joslin scientists are following up on this study to deepen understanding of how inhibiting PTPN22 affects T and B cells.

This research was funded in part by a Career Development Award from JDRF and with support from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).


Story Source:

The above story is based on materials provided by Joslin Diabetes Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Zheng, S. Kissler. PTPN22 Silencing in the NOD Model Indicates the Type 1 Diabetes-Associated Allele Is Not a Loss-of-Function Variant. Diabetes, 2012; DOI: 10.2337/db12-0929

Cite This Page:

Joslin Diabetes Center. "Researchers increase understanding of genetic risk factor for type 1 diabetes." ScienceDaily. ScienceDaily, 28 November 2012. <www.sciencedaily.com/releases/2012/11/121128132355.htm>.
Joslin Diabetes Center. (2012, November 28). Researchers increase understanding of genetic risk factor for type 1 diabetes. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/11/121128132355.htm
Joslin Diabetes Center. "Researchers increase understanding of genetic risk factor for type 1 diabetes." ScienceDaily. www.sciencedaily.com/releases/2012/11/121128132355.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins