Featured Research

from universities, journals, and other organizations

Attosecond 'lighthouses': Simple method for generating isolated ultrashort pulses

Date:
November 29, 2012
Source:
Commissariat a l'Energie Atomique (CEA)
Summary:
Electrons move extremely rapidly inside atoms and molecules (the order of magnitude is the attosecond, i.e. 10-18 of a second). One way to observe these phenomena is to use isolated ultrashort pulses of light, which are successfully characterized at this time scale. There is a particularly well-adapted light source that can be used to carry out such research into how matter behaves, a new study shows.

Electrons move extremely rapidly inside atoms and molecules (the order of magnitude is the attosecond, i.e. 10-18 of a second). One way to observe these phenomena is to use isolated ultrashort pulses of light, which are successfully characterized at this time scale. As demonstrated by researchers at CEA-IRAMIS and the Applied Optics Laboratory (LOA, CNRS/ENSTA-Paris Tech/École Polytechnique), there is a particularly well-adapted light source that can be used to carry out such research into how matter behaves.

Related Articles


The results are published in Nature Photonics on December 1, 2012.

To observe the extremely rapid motion of electrons in the core of atoms and molecules we require pulses in the attosecond range, allowing us to carry out "pump-probe" experiments in which an initial pulse excites the system, and a second allows us to observe the effect of this excitation, following a variable time delay.

The current method and its limitations

It is not possible to generate the kind of pulse required using standard laser optics technology. Until now, the only method that has been demonstrated to achieve such short lengths of time, utilizes the interaction between ultra-intense femtosecond (10-15 s) laser pulses and matter: as it interacts with the target, this pulse is deformed, producing a train of pulses of the order of a few tens of attoseconds each. These pulses follow each other at extremely short intervals, making them difficult to use in experiments, and, over the last ten years or so, various methods for generating an isolated attosecond pulse have been suggested.

Innovative approach of this study

To produce isolated attosecond pulses, the scientists came up with the much simpler and more easily exploitable idea of spatially scattering the train of pulses, just like the beam of light from a lighthouse. Each attosecond pulse is thus emitted in a slightly different direction, giving a series of attosecond pulses that are clearly distinct in terms of the direction in which they propagate.

At a distance from the solid target, the successive attosecond pulses are distinct and, since they are several millimeters apart, can be isolated from one another.

The principle behind this new approach, initially put forward by the team at IRAMIS, was first validated theoretically by numerical simulation, using France's HPC facility, GENCI (Grand équipement national de calcul intensif). The experimental demonstration was then performed at LOA, the Applied Optics Laboratory (École Polytechnique-CNRS-ENSTA-ParisTech) on a laser chain delivering pulses close to the ultrashort optical cycle, thanks to very close collaboration between the two laboratories.

The effect observed opens up a world of new possibilities for attosecond science, a new science that has developed rapidly in the last 10 years. Using a single laser pulse to generate a number of isolated attosecond pulses, in the form of perfectly synchronous beams at distinct angles, the attosecond "lighthouses" are the ideal light source for future pump-probe experiments designed for studying electronic motion in mater.


Story Source:

The above story is based on materials provided by Commissariat a l'Energie Atomique (CEA). Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan A. Wheeler, Antonin Borot, Sylvain Monchocé, Henri Vincenti, Aurélien Ricci, Arnaud Malvache, Rodrigo Lopez-Martens, Fabien Quéré. Attosecond lighthouses from plasma mirrors. Nature Photonics, 2012; DOI: 10.1038/nphoton.2012.284

Cite This Page:

Commissariat a l'Energie Atomique (CEA). "Attosecond 'lighthouses': Simple method for generating isolated ultrashort pulses." ScienceDaily. ScienceDaily, 29 November 2012. <www.sciencedaily.com/releases/2012/11/121129093413.htm>.
Commissariat a l'Energie Atomique (CEA). (2012, November 29). Attosecond 'lighthouses': Simple method for generating isolated ultrashort pulses. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/11/121129093413.htm
Commissariat a l'Energie Atomique (CEA). "Attosecond 'lighthouses': Simple method for generating isolated ultrashort pulses." ScienceDaily. www.sciencedaily.com/releases/2012/11/121129093413.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) — British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) — A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) — Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins