Featured Research

from universities, journals, and other organizations

More intense North Atlantic tropical storms likely in the future

Date:
November 30, 2012
Source:
University of Iowa
Summary:
Tropical storms that make their way into the North Atlantic, and possibly strike the East Coast of the United States, likely will become more intense during the rest of this century.

NOAA's GOES-13 satellite captured this visible image of Hurricane Sandy battering the U.S. East coast on Monday, Oct. 29 at 9:10 a.m. EDT. Sandy's center was about 310 miles south-southeast of New York City. Tropical Storm force winds are about 1,000 miles in diameter.
Credit: Image courtesy of NASA GOES Project.

Tropical storms that make their way into the North Atlantic, and possibly strike the East Coast of the United States, likely will become more intense during the rest of this century.

That's the prediction of one University of Iowa researcher and his colleague as published in an early online release in the Journal of Climate, the official publication of the American Meteorological Society.

The study is a compilation of results from some of the best available computer models of climate, according to lead author Gabriele Villarini, assistant professor of civil and environmental engineering and assistant research engineer at IIHR-Hydroscience & Engineering, and his colleague Gabriel Vecchi of the National Oceanic and Atmospheric Administration, Princeton, N.J.

"We wanted to conduct the study because intense tropical cyclones can harm people and property," Villarini says. "The adverse and long-lasting influence of such storms recently was demonstrated by the damage Hurricane Sandy created along the East Coast."

The study itself examines projected changes in the North Atlantic Power Dissipation Index (PDI) using output from 17 state-of-the-art global climate models and three different potential scenarios. The PDI is an index that integrates storm intensity, duration, and frequency.

"We found that the PDI is projected to increase in the 21st century in response to both greenhouse gas increases and reductions in particulate pollution over the Atlantic over the current century. By relating these results to other findings in a paper we published May 13, 2012 in the journal Nature Climate Change, we found that, while the number of storms is not projected to increase, their intensity is," he says.

"Moreover, our results indicate that as more carbon dioxide is emitted, the stronger the storms get, while scenarios with the most aggressive carbon dioxide mitigation show the smallest increase in intensity," he says.


Story Source:

The above story is based on materials provided by University of Iowa. The original article was written by Gary Galluzzo. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gabriele Villarini, Gabriel A. Vecchi. Projected Increases in North Atlantic Tropical Cyclone Intensity from CMIP5 Models. Journal of Climate, 2012; 121116142835009 DOI: 10.1175/JCLI-D-12-00441.1

Cite This Page:

University of Iowa. "More intense North Atlantic tropical storms likely in the future." ScienceDaily. ScienceDaily, 30 November 2012. <www.sciencedaily.com/releases/2012/11/121130151651.htm>.
University of Iowa. (2012, November 30). More intense North Atlantic tropical storms likely in the future. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2012/11/121130151651.htm
University of Iowa. "More intense North Atlantic tropical storms likely in the future." ScienceDaily. www.sciencedaily.com/releases/2012/11/121130151651.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins