Featured Research

from universities, journals, and other organizations

Bismuth provides perfect dance partners for quantum computing qubits

Date:
December 2, 2012
Source:
University of Warwick
Summary:
New research has demonstrated a way to make bismuth electrons and nuclei work together as qubits in a quantum computer.

New research has demonstrated a way to make bismuth electrons and nuclei work together as qubits in a quantum computer.

The discovery, published in Nature Materials, takes us a key step further to creating practical quantum computing which could tackle complex programs that would otherwise take the lifetime of the universe to finish.

The collaboration partners are based in the University of Warwick, UCL, ETH Zurich and the USA Sandia National Labs.

Information on our normal computers is stored as bits, which are either ones or zeros. Quantum bits work differently in that each quantum bit can try out being a one and a zero at the same time, which makes them much more powerful for solving certain problems.

Researchers have explored influencing the direction of spin in electrons to create those states but this approach has had its challenges.

Dr Gavin Morley from the University of Warwick's Department of Physics said: "Bismuth atoms in silicon crystals are great at working as quantum bits. Each bismuth atom has a spare electron, which has a "spin" that can be influenced by magnets.

"If we put the electron into a magnet, it lines up with the magnetic field, behaving like a compass needle.

"We can control the direction that the electron is pointing in, using microwaves. Microwaves let us flip the direction the electron is pointing in, and these "up and down" directions are what constitute the "one and zero" in our quantum bit.

"Unfortunately, our electron is constantly prone to interference from nearby atoms that are out of our control.

"And the more time we waste, the greater the chance that our poor electron will suffer from interference, making it unusable to us."

"Now, this electron is coupled to the bismuth nucleus, which has its own spin: a smaller compass needle. Using this as an extra quantum bit and flipping it at the same time as our electron, would really help out. We can control this smaller compass needle too, but as it's smaller, it takes longer to control, and we need to use radiowaves instead of microwaves to do this."

"The good news is that as it's slow to respond, our bismuth nucleus's smaller compass needle suffers less from interference by nearby rogue atoms than our electron's larger compass needle. Unfortunately in the time we spend controlling our bismuth nucleus, these rogue atoms interfere with our electron."

"However we found that if we reduce the magnetic field just enough, then the electron and the nucleus become hybridized. Our new experiments at ETH Zurich show that through hybridisation, we can flip both compass needles easily using microwaves."

Dr Morley compares it to the magnetic resonance imaging we find in hospitals.

He said: "MRI works by controlling the nuclear spins in your body.

"We have hybridized electron and nuclear spins and found that this makes it easier to control them.

"It's an easy new way to make slow and fast quantum bits work together. There are lots more challenges to face before anyone has a working computer with enough quantum bits to be useful, but with this hybridization as part of a computer's design, we are one step closer."


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gavin W. Morley, Petra Lueders, M. Hamed Mohammady, Setrak J. Balian, Gabriel Aeppli, Christopher W. M. Kay, Wayne M. Witzel, Gunnar Jeschke, Tania S. Monteiro. Quantum control of hybrid nuclear–electronic qubits. Nature Materials, 2012; DOI: 10.1038/nmat3499

Cite This Page:

University of Warwick. "Bismuth provides perfect dance partners for quantum computing qubits." ScienceDaily. ScienceDaily, 2 December 2012. <www.sciencedaily.com/releases/2012/12/121202164321.htm>.
University of Warwick. (2012, December 2). Bismuth provides perfect dance partners for quantum computing qubits. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2012/12/121202164321.htm
University of Warwick. "Bismuth provides perfect dance partners for quantum computing qubits." ScienceDaily. www.sciencedaily.com/releases/2012/12/121202164321.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins