Featured Research

from universities, journals, and other organizations

A better way to make chemicals? Technique for observing 'mechanochemical' synthesis could boost green chemistry

Date:
December 2, 2012
Source:
McGill University
Summary:
For the first time, scientists have studied a mechanochemical milling reaction in real time, using highly penetrating X-rays to observe the surprisingly rapid transformations as the mill mixed, ground, and transformed simple ingredients into a complex product. This research promises to advance scientists' understanding of processes central to the pharmaceutical, metallurgical, cement and mineral industries – and could open new opportunities in "green chemistry" and environmentally friendly chemical synthesis.

The experimental setup at the ESRF in Grenoble (France) with the milling jar containing the white ZIF-8 shown in the front, mounted on a modified industrial mill.
Credit: T. Friščić

Bulk solvents, widely used in the chemical industry, pose a serious threat to human health and the environment. As a result, there is growing interest in avoiding their use by relying on "mechanochemistry" -- an energy-efficient alternative that uses high-frequency milling to drive reactions. Because milling involves the intense impact of steel balls in rapidly moving jars, however, the underlying chemistry is difficult to observe.

Related Articles


Now, for the first time, scientists have studied a milling reaction in real time, using highly penetrating X-rays to observe the surprisingly rapid transformations as the mill mixed, ground, and transformed simple ingredients into a complex product. This research, reported Dec. 2 in Nature Chemistry, promises to advance scientists' understanding of processes central to the pharmaceutical, metallurgical, cement and mineral industries -- and could open new opportunities in "green chemistry" and environmentally friendly chemical synthesis.

The international team of researchers was led by Tomislav Friščić of McGill University in collaboration with Ivan Halasz from the University of Zagreb in Croatia, and scientists from the University of Cambridge, the Max-Planck-Institute for Solid State Research in Stuttgart, Germany, and the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

While mechanical action can break chemical bonds -- for example, in the wear and tear of textile fibers -- mechanical force can also be used to synthesize new chemical compounds and materials. In recent years, ball milling has become increasingly popular in the production of highly complex chemical structures. In such synthesis, steel balls are shaken with the reactants and catalysts in a rapidly vibrating jar. Chemical transformations take place at the sites of ball collision, where impact causes instant "hot spots" of localized heat and pressure. This is difficult to model and, without access to real time reaction monitoring, mechanochemistry remained poorly understood.

"When we set out to study these reactions, the challenge was to observe the entire reaction without disturbing it, in particular the short-lived intermediates that appear and disappear under continuous impact in less than a minute," says Friščić, an assistant professor in McGill's Department of Chemistry.

The team of scientists chose to study mechanochemical production of the metal-organic framework ZIF-8 from the simplest and non-toxic components. Materials such as ZIF-8 are rapidly gaining popularity for their ability to capture large amounts of CO2; if manufactured cheaply and sustainably, they could become widely used for carbon capture and storage, catalysis and even hydrogen storage.

"The team came to the ESRF because of our high-energy X-rays capable of penetrating 3 mm thick walls of a rapidly moving reaction jar made of steel, aluminium or plastic. The X-ray beam must get inside the jar to probe the mechanochemical formation of ZIF-8, and then out again to detect the changes as they happened," says Simon Kimber, a scientist at the European Synchrotron Radiation Facility (ESRF) in Grenoble, who is a member of the team. This unprecedented methodology enabled the real-time observation of reaction kinetics, reaction intermediates and the development of their respective nanoparticles.

In principle, this technique could be used to study all types of chemical reactions in a ball mill, and optimize them for processing in a range of industries. "That would translate into good news for the environment, for industry -- and for consumers," Friščić says.


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tomislav Friščić, Ivan Halasz, Patrick J. Beldon, Ana M. Belenguer, Frank Adams, Simon A.J. Kimber, Veijo Honkimδki, Robert E. Dinnebier. Real-time and in situ monitoring of mechanochemical milling reactions. Nature Chemistry, 2012; DOI: 10.1038/nchem.1505

Cite This Page:

McGill University. "A better way to make chemicals? Technique for observing 'mechanochemical' synthesis could boost green chemistry." ScienceDaily. ScienceDaily, 2 December 2012. <www.sciencedaily.com/releases/2012/12/121202164432.htm>.
McGill University. (2012, December 2). A better way to make chemicals? Technique for observing 'mechanochemical' synthesis could boost green chemistry. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2012/12/121202164432.htm
McGill University. "A better way to make chemicals? Technique for observing 'mechanochemical' synthesis could boost green chemistry." ScienceDaily. www.sciencedaily.com/releases/2012/12/121202164432.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) — An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) — Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) — She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) — Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins