Featured Research

from universities, journals, and other organizations

How copper restricts the spread of global antibiotic-resistant infections

Date:
December 4, 2012
Source:
University of Southampton
Summary:
New research has shown that copper can prevent horizontal transmission of genes, which has contributed to the increasing number of antibiotic-resistant infections worldwide. Horizontal gene transfer (HGT) in bacteria is largely responsible for the development of antibiotic resistance, which has led to an increasing number of difficult-to-treat healthcare-associated infections (HCAIs).

This is Professor Bill Keevil in his lab.
Credit: University of Southampton

New research from the University of Southampton has shown that copper can prevent horizontal transmission of genes, which has contributed to the increasing number of antibiotic-resistant infections worldwide.

Horizontal gene transfer (HGT) in bacteria is largely responsible for the development of antibiotic resistance, which has led to an increasing number of difficult-to-treat healthcare-associated infections (HCAIs).

The newly published paper, which appears in the journal mBio, shows that while HGT can take place in the environment, on frequently-touched surfaces, such as door handles, trolleys and tables, which are made from stainless steel -- copper prevents this process from occurring and rapidly kills bacteria on contact.

Lead author Professor Bill Keevil, Chair in Environmental Healthcare at the University of Southampton, explains: "Whilst studies have focussed on HGT in vivo (an experiment that is done in the body of a living organism), this work investigates whether the ability of pathogens to persist in the environment, particularly on touch surfaces, may also play an important role. Here we show prolonged survival of multidrug resistant Escherichia coli and Klebsiella pneumoniae on stainless steel surfaces for several weeks. However, rapid death of both antibiotic-resistant strains and destruction of plasmid and genomic DNA was observed on copper and copper alloy surfaces, which could be useful in the prevention of infection spread and gene transfer."

Showing that horizontal transmission of genes (for example, those governing antibiotic resistance) occurs on touch surfaces, supports the important role of the environment in infection prevention.

Professor Keevil summarises: "We know many human pathogens survive for long periods in the hospital environment and can lead to infection, expensive treatment, blocked beds and death. What we have shown in this work is the potential for strategically-placed antimicrobial copper touch surfaces to not only break the chain of contamination, but also actively reduce the risk of antibiotic resistance developing at the same time. Provided adequate cleaning continues in critical environments, copper can be employed as an important additional tool in the fight against pathogens."

Beyond the healthcare environment, copper also has a wider role to play in infection control. Professor Keevil explains: "Copper touch surfaces have promise for preventing antibiotic resistance transfer in public buildings and mass transportation systems, which lead to local and -- in the case of jet travel -- rapid worldwide dissemination of multi-drug resistant superbugs as soon as they appear.

"People with inadequate hand hygiene could exchange their bugs and different antibiotic resistance genes just by touching a stair rail or door handle, ready to be picked up by someone else and passed on. Copper substantially reduces and restricts the spread of these infections, making an important contribution to improved hygiene and, consequently, health."

Installations of copper touch surfaces have already taken place across the UK and around the world, harnessing copper's ability to continuously reduce bioburden and consequently the risk of HCAI transmission. This research offers additional evidence to deploy copper (and copper-containing alloys that benefit from the metal's antimicrobial properties) in the form of touch surfaces to provide extra protection alongside standard hygiene practices.


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Cite This Page:

University of Southampton. "How copper restricts the spread of global antibiotic-resistant infections." ScienceDaily. ScienceDaily, 4 December 2012. <www.sciencedaily.com/releases/2012/12/121204081150.htm>.
University of Southampton. (2012, December 4). How copper restricts the spread of global antibiotic-resistant infections. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2012/12/121204081150.htm
University of Southampton. "How copper restricts the spread of global antibiotic-resistant infections." ScienceDaily. www.sciencedaily.com/releases/2012/12/121204081150.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins