Featured Research

from universities, journals, and other organizations

Obesity reversed in mice by manipulating production of an enzyme

Date:
December 5, 2012
Source:
Virginia Commonwealth University
Summary:
Approximately 68 percent of US adults are overweight or obese, according to the National Cancer Institute, which puts them at greater risk for developing cancer, cardiovascular disease, diabetes and a host of other chronic illnesses. Scientists have now successfully reversed obesity in mice by manipulating the production of an enzyme.

Approximately 68 percent of U.S. adults are overweight or obese, according to the National Cancer Institute, which puts them at greater risk for developing cancer, cardiovascular disease, diabetes and a host of other chronic illnesses. But an international team of scientists led by Virginia Commonwealth University Massey Cancer Center researcher Andrew Larner, M.D., Ph.D., has successfully reversed obesity in mice by manipulating the production of an enzyme known as tyrosine-protein kinase-2 (Tyk2). In their experiments, the scientists discovered that Tyk2 helps regulate obesity in mice and humans through the differentiation of a type of fat tissue known as brown adipose tissue (BAT).

Published December 5 in the online edition of the journal Cell Metabolism, the study is the first to provide evidence of the relationship between Tyk2 and BAT. Previous studies by Larner and his team discovered that Tyk2 helps suppress the growth and metastasis of breast cancer, and now the current study suggests this same enzyme could help protect against and even reverse obesity.

The scientists were able to reverse obesity in mice that do not express Tyk2 by expressing a protein known as signal transducer and activator of transcription-3 (Stat3). Stat3 mediates the expression of a variety of genes that regulate a host of cellular processes. The researchers found that Stat3 formed a complex with a protein known as PR domain containing 16 (PRDM16) to restore the development of BAT and decrease obesity.

"We discovered that Tyk2 levels in mice are regulated by diet. We then tested tissue samples from humans and found that levels of Tyk2 were more than 50 percent lower in obese humans," said Larner, Martha Anne Hatcher Distinguished Professor in Oncology and co-leader of the Cancer Cell Signaling program at VCU Massey Cancer Center. "Our findings open new potential avenues for research and development of new pharmacological and nutritional treatments for obesity."

There are two different types of fat -- white adipose tissue (WAT) and BAT. WAT is the primary site of energy storage. BAT is responsible for energy expenditure in order to maintain body temperature. BAT deposits are present in all mammals, but until recently, scientists thought BAT was only active in infants and not in adult humans. Only in the last four years have scientists realized that BAT is present in adults and helps to regulate energy expenditure. Additionally, research has shown that diminished BAT activity is associated with metabolic syndrome, a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes. Researchers estimate metabolic syndrome could affect as much as 25 percent of the U.S. population.

"We have made some very interesting observations in this study, but there are many questions left unanswered," said Larner. "We plan to further investigate the actions of Tyk2 and Stat3 in order to better understand the mechanisms involved in the development of brown adipose tissue. We're hopeful this research will help lead to new targets to treat a variety of obesity-related diseases such as cancer, cardiovascular disease and diabetes."

Larner collaborated on this study with Marta Derecka, Magdalena Morgan, Vidisha Raje, Jennifer Sisler and Quifang Zhang, all from the Department of Biochemistry and Molecular Biology at VCU School of Medicine; Tomasz Kordula, Ph.D., Cancer Cell Signaling program member at VCU Massey; Agnieszka Gornicka, from the Cleveland Clinic Foundation; Sergei B. Koralov, Ph.D., from New York University Medical School; Dennis Otero, Ph.D., from the University of California; Joanna Cichy, Ph.D., from Jagiellonian University in Krakow, Poland; Klaus Rajewsky, Ph.D., from Harvard Medical School; Kazuya Shimoda, M.D., Ph.D., from Miyazaki University in Japan; Valeria Poli, Ph.D., from the University of Turin in Torino, Italy; Brigit Strobl, Ph.D., from the University of Veterinary Medicine in Vienna, Austria; Sandra Pellegrini, Ph.D., from Institut Pasteur in Paris, France; Thurl E. Harris, Ph.D., and Susanna R. Keller, M.D., from University of Virginia School of Medicine; Patrick Seale, Ph.D., from the University of Pennsylvania School of Medicine; Aaron P. Russell, Ph.D., from Deakin University in Burwood, Australia; Andrew J. McAinch, Ph.D., from Victoria University in St. Albans, Australia; Paul E. O'Brien, M.D., from Monash University in Melbourne, Australia; and Colleen M. Croniger, Ph.D., from Case Western University School of Medicine.


Story Source:

The above story is based on materials provided by Virginia Commonwealth University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marta Derecka, Agnieszka Gornicka, SergeiB. Koralov, Karol Szczepanek, Magdalena Morgan, Vidisha Raje, Jennifer Sisler, Qifang Zhang, Dennis Otero, Joanna Cichy, Klaus Rajewsky, Kazuya Shimoda, Valeria Poli, Birgit Strobl, Sandra Pellegrini, ThurlE. Harris, Patrick Seale, AaronP. Russell, AndrewJ. McAinch, PaulE. O’Brien, SusannaR. Keller, ColleenM. Croniger, Tomasz Kordula, AndrewC. Larner. Tyk2 and Stat3 Regulate Brown Adipose Tissue Differentiation and Obesity. Cell Metabolism, 2012; 16 (6): 814 DOI: 10.1016/j.cmet.2012.11.005

Cite This Page:

Virginia Commonwealth University. "Obesity reversed in mice by manipulating production of an enzyme." ScienceDaily. ScienceDaily, 5 December 2012. <www.sciencedaily.com/releases/2012/12/121205132433.htm>.
Virginia Commonwealth University. (2012, December 5). Obesity reversed in mice by manipulating production of an enzyme. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/12/121205132433.htm
Virginia Commonwealth University. "Obesity reversed in mice by manipulating production of an enzyme." ScienceDaily. www.sciencedaily.com/releases/2012/12/121205132433.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins