Featured Research

from universities, journals, and other organizations

New chemical reaction could explain how stars form, evolve, and eventually die

Date:
December 7, 2012
Source:
University of North Dakota
Summary:
Researchers have discovered a molecular-level interaction that science had puzzled over for decades but had never seen. That discovery, it turns out, may redefine how science views chemical compound formation. It also answers questions about what goes on in places like white dwarfs, the super dense cores of stars nearing the end of their life cycles.

Ancient White Dwarf Stars: Pushing the limits of its powerful vision, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy in this image from 2002.
Credit: NASA and H. Richer (University of British Columbia)

University of North Dakota scientist Mark Hoffmann's version of Star Search goes a long way -- a very long way -- out into the universe.

Hoffmann, a computational chemist, and his colleagues Tryve Helgaker, a well-known Norwegian scientist, and co-authors E.I. Tellgren and K. Lange, also working in Norway, have discovered a molecular-level interaction that science had puzzled over for decades but had never seen.

That discovery, it turns out, may redefine how science views chemical compound formation. It also answers questions about what goes on in places like white dwarfs, the super dense cores of stars nearing the end of their life cycles.

"We discovered a new type of chemical bonding," said Hoffmann, known globally for his pioneering work in the theory and computer modeling of chemical compound formation.

"That's a pretty bold statement, but I'm not kidding you! It's a brand new type of chemical bonding, not previously known to science."

Hoffmann and his colleagues have rewritten the chemical rule book for assessing what happens in the night sky. It's about answering timeless questions such as how stars form, evolve, and eventually die.

Their work also provides the secret for how some compounds form in the distant universe. This momentous discovery appears in an article in a recent issue of the journal Science.

"Our discovery addresses one of the mysteries in astrophysics about the spectrum of white dwarf stars," Hoffmann said. "White dwarfs have an unusual spectrum that has been thought to result from polymerized hydrogen and helium which, of course, do not occur on Earth.

"It's possible out there because the magnetic fields on white dwarfs are several orders of magnitude larger than anything that can be generated on Earth."

The closest white dwarf, Sirius B, is a faint twin to the brightest star in the night sky, Sirius A. It's about the same size as our sun, but much denser; its average density is 1.7 metric tons per cubic centimeter, or about 3,000 pounds compressed into a box the size of a sugar cube.

Hoffmann and his team described a magnetically induced bonding process between materials. "There was speculation that this phenomenon should exist, but no one had the proof, and no one -- until the team I'm on described the process -- had the theoretical structure and the computational tools to address this," he said.

On Earth, even the boldest military experiments generate a peak of maybe 1,000 Tesla -- a measure of magnetic force (refrigerator magnets generate a thousandth of one Tesla). But on Sirius B, for example, magnetic fields are on the order of 200,000 to 400,000 Tesla, enough to challenge the electronic interactions that dominate the chemistry and material science we know on Earth.

Such vast magnetic fields directly alter the way atoms come together, and can alter the chemical reality we know on Earth.

"What we had before we discovered this was basically a paper-and-pencil model of what goes on in the universe. Compared to what's out there in places such as white dwarf stars, the magnetic fields we can generate here -- even with the strongest magnets -- are pathetic."

So how did they do it?

"We computationally modeled the behavior that we theorized, based on universally applicable physical principles," Hoffmann said.

The team's computer model supported their theory. Now it's up to astrophysicists to test the model by old-fashioned observation of the stars.


Story Source:

The above story is based on materials provided by University of North Dakota. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. K. Lange, E. I. Tellgren, M. R. Hoffmann, T. Helgaker. A Paramagnetic Bonding Mechanism for Diatomics in Strong Magnetic Fields. Science, 2012; 337 (6092): 327 DOI: 10.1126/science.1219703

Cite This Page:

University of North Dakota. "New chemical reaction could explain how stars form, evolve, and eventually die." ScienceDaily. ScienceDaily, 7 December 2012. <www.sciencedaily.com/releases/2012/12/121207174415.htm>.
University of North Dakota. (2012, December 7). New chemical reaction could explain how stars form, evolve, and eventually die. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/12/121207174415.htm
University of North Dakota. "New chemical reaction could explain how stars form, evolve, and eventually die." ScienceDaily. www.sciencedaily.com/releases/2012/12/121207174415.htm (accessed July 28, 2014).

Share This




More Space & Time News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
NASA EDGE: OCO-2 Launch

NASA EDGE: OCO-2 Launch

NASA (July 25, 2014) NASA EDGE webcasts live from Vandenberg AFB for the launch of the Oribiting Carbon Observatory-2 (OCO) launch. Video provided by NASA
Powered by NewsLook.com
This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins