Featured Research

from universities, journals, and other organizations

Electronics: Graphene sheets' growing attractions

Date:
December 10, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
A theoretical and numerical study of graphene sheets reveals a property that may lead to novel opto-electric devices and circuits.

] Plasmon energy states in an array of four graphene sheets. Each plane represents different plasmon energy states resulting from different numbers of electrons in each sheet.
Credit: Copyright: 2012 A*STAR Institute of Materials Research and Engineering

A theoretical and numerical study of graphene sheets reveals a property that may lead to novel opto-electric devices and circuits.

Related Articles


One-atom-thick sheets of carbon -- known as graphene -- have a range of electronic properties that scientists are investigating for potential use in novel devices. Graphene's optical properties are also garnering attention, which may increase further as a result of research from the A*STAR Institute of Materials Research and Engineering (IMRE). Bing Wang of the IMRE and his co-workers have demonstrated that the interactions of single graphene sheets in certain arrays allow efficient control of light at the nanoscale1.

Light squeezed between single graphene sheets can propagate more efficiently than along a single sheet. Wang notes this could have important applications in optical-nanofocusing and in superlens imaging of nanoscale objects. In conventional optical instruments, light can be controlled only by structures that are about the same scale as its wavelength, which for optical light is much greater than the thickness of graphene. By utilizing surface plasmons, which are collective movements of electrons at the surface of electrical conductors such as graphene, scientists can focus light to the size of only a few nanometers.

Wang and his co-workers calculated the theoretical propagation of surface plasmons in structures consisting of single-atomic sheets of graphene, separated by an insulating material. For small separations of around 20 nanometers, they found that the surface plasmons in the graphene sheets interacted such that they became 'coupled' (see image). This theoretical coupling was very strong, unlike that found in other materials, and greatly influenced the propagation of light between the graphene sheets.

The researchers found, for instance, that optical losses were reduced, so light could propagate for longer distances. In addition, under a particular incoming angle for the light, the study predicted that the refraction of the incoming beam would go in the direction opposite to what is normally observed. Such an unusual negative refraction can lead to remarkable effects such as superlensing, which allows imaging with almost limitless resolution.

As graphene is a semiconductor and not a metal, it offers many more possibilities than most other plasmonic devices, comments the IMRE's Jing Hua Teng, who led the research. "These graphene sheet arrays may lead to dynamically controllable devices, thanks to the easier tuning of graphene's properties through external stimuli such as electrical voltages." Graphene also allows for an efficient coupling of the plasmons to other objects nearby, such as molecules that are adsorbed on its surface. Teng therefore says that the next step is to further explore the interesting physics in graphene array structures and look into their immediate applications.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Bing Wang, Xiang Zhang, Francisco Garcνa-Vidal, Xiaocong Yuan, Jinghua Teng. Strong Coupling of Surface Plasmon Polaritons in Monolayer Graphene Sheet Arrays. Physical Review Letters, 2012; 109 (7) DOI: 10.1103/PhysRevLett.109.073901

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Electronics: Graphene sheets' growing attractions." ScienceDaily. ScienceDaily, 10 December 2012. <www.sciencedaily.com/releases/2012/12/121210080431.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, December 10). Electronics: Graphene sheets' growing attractions. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2012/12/121210080431.htm
The Agency for Science, Technology and Research (A*STAR). "Electronics: Graphene sheets' growing attractions." ScienceDaily. www.sciencedaily.com/releases/2012/12/121210080431.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) — Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) — In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) — Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) — British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins