Featured Research

from universities, journals, and other organizations

Photosynthesis: Mysterious enzyme structure solved

Date:
December 12, 2012
Source:
Max-Planck-Institut für Chemische Energiekonversion
Summary:
Scientists have solved a long-standing puzzle in photosynthesis research. With the aid of quantum chemistry they were able to provide unexpected insight into the properties of the oxygen evolving complex (OEC). The OEC is the catalyst in plants that splits water using sunlight in order to build carbohydrates, thus powering all life on earth. Its precise structure, which was showing enigmatic spectroscopic behavior, could now finally be solved with the aid of quantum chemistry.

The two structures of the core of nature's water oxidizing catalyst Photosystem II, which interconvert by changing bonds between an oxygen and its two manganese bonding partners; a different spectroscopic signal is produced by each arrangement.
Credit: Image courtesy of Max-Planck-Institut für Chemische Energiekonversion

Scientists at the Max Planck Institute for Chemical Energy Conversion (MPI CEC) have solved a long-standing puzzle in photosynthesis research. With the aid of quantum chemistry they were able to provide unexpected insight into the properties of the oxygen evolving complex (OEC). The OEC is the catalyst in plants that splits water using sunlight in order to build carbohydrates, thus powering all life on earth. Its precise structure, which was showing enigmatic spectroscopic behaviour, could now finally be solved with the aid of quantum chemistry.

In one of its most studied oxidation states the OEC revealed two types of spectroscopic signals. These signals could be converted to one another by various treatments, but not in any structurally comprehensible way. Moreover the signals are so complex that a detailed molecular structure could not be deduced.

With the aid of theoretical spectroscopic techniques, Dr. Dimitrios Pantazis, scientist at the MPI CEC, and his colleagues were able to show that the two signals are caused by two energetically similar and interconvertible structures of the complex. The core of the enzyme consists of a partial cubic structure made of manganese, calcium and oxygen (Mn4CaO5 s). "Calculations show, that the two structures differ only by one bond, that swaps between the central oxygen and the two terminal manganese atoms," states Pantazis. This small change has a huge impact on the electronic structure and thus the spectroscopic properties of the molecule. Both structures are almost equal in energy and the bond swapping can happen over a low energetic barrier. Crucially, the scientists at the MPI additionally proved using theoretical simulations that each of the two structures has a distinct spectroscopic signature and that these two signatures have a one-to-one correspondence with the experimentally observed spectroscopic signals.

The deep understanding of the OEC is fundamental in order to further elucidate nature´s mysteries on the oxidation of water, a reaction that plays an essential role for energy research, such as in artificial photosynthesis.

After these striking findings, research by Pantazis and his group is currently focused on identifying whether the oxygen atom swapping bonds with the manganese is one of the oxygen atoms released from the enzyme as molecular oxygen. The new findings will shed light on the kinetics and exchange of water molecules that take part in the reaction, paving the way for a detailed atomic-level understanding of the mechanism of water oxidation.


Story Source:

The above story is based on materials provided by Max-Planck-Institut für Chemische Energiekonversion. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dimitrios A. Pantazis, William Ames, Nicholas Cox, Wolfgang Lubitz, Frank Neese. Two Interconvertible Structures that Explain the Spectroscopic Properties of the Oxygen-Evolving Complex of Photosystem II in the S2State. Angewandte Chemie International Edition, 2012; 51 (39): 9935 DOI: 10.1002/anie.201204705

Cite This Page:

Max-Planck-Institut für Chemische Energiekonversion. "Photosynthesis: Mysterious enzyme structure solved." ScienceDaily. ScienceDaily, 12 December 2012. <www.sciencedaily.com/releases/2012/12/121212092819.htm>.
Max-Planck-Institut für Chemische Energiekonversion. (2012, December 12). Photosynthesis: Mysterious enzyme structure solved. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2012/12/121212092819.htm
Max-Planck-Institut für Chemische Energiekonversion. "Photosynthesis: Mysterious enzyme structure solved." ScienceDaily. www.sciencedaily.com/releases/2012/12/121212092819.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Next Stop America for France's TGV?

Next Stop America for France's TGV?

Reuters - Business Video Online (Apr. 24, 2014) — General Electric keeps quiet on reports it's in talks to buy French turbine and train maker Alstom. Ivor Bennett reports on what could be an embarrassing rumour for the French government, with business-friendly reforms proving a hard sell. Video provided by Reuters
Powered by NewsLook.com
Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) — President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) — President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins