Featured Research

from universities, journals, and other organizations

Fragile X protein linked to nearly 100 genes involved in autism

Date:
December 12, 2012
Source:
Duke University Medical Center
Summary:
Doctors have known for many years that patients with fragile X syndrome, the most common form of inherited intellectual disability, are often also diagnosed with autism. But little has been known about how the two diagnoses are related. Now scientists have pinpointed the precise genetic footprint that links the two.

Doctors have known for many years that patients with fragile X syndrome, the most common form of inherited intellectual disability, are often also diagnosed with autism. But little has been known about how the two diagnoses are related.

Related Articles


Now a collaborative research effort at Duke University Medical Center and Rockefeller University has pinpointed the precise genetic footprint that links the two. The findings, published online in the journal Nature on Dec. 12, 2012, point the way toward new genetic testing that could more precisely diagnose and categorize the spectrum of autism-related disorders.

Fragile X syndrome is the most well understood single-gene cause of autism. It results from defects on a small part of the genetic code for a protein that researchers have dubbed the fragile X mental retardation protein, or FMRP.

Normally, FMRP plays an important role controlling production of other proteins in the brain and other organs. It does this by looking for specific genetic patterns located on the messages encoding proteins. When it locates these genetic flags, it attaches to them and, along with other signals, controls where and when protein is made.

In fragile X syndrome, this process breaks down because a defect in the gene causes the body to produce too little, or in some cases, none of the FMRP protein. As a result, additional proteins it would normally regulate are made in the wrong place and at the wrong time. Until now, little was known about how this process worked in people with the autism.

Using a combination of laboratory experiments and advanced bioinformatics, the research team, led by Thomas Tuschl, PhD, a Howard Hughes Medical Institute investigator at Rockefeller University, and Uwe Ohler, PhD, an associate professor in Biostatistics and Bioinformatics at the Duke Institute for Genome Sciences & Policy, identified both the genetic flags that FMRP is looking for and the genes it targets.

The researchers discovered that FMRP directly controls at least 93 genes that have been independently linked to autism, as well as Angelman, Prader-Willi, Rett and other neurologic syndromes that have overlapping features with autism.

Additional research using a mouse model of fragile X syndrome revealed that the animals had abnormal protein production not only in the brain, but also in the ovary. The findings confirmed that the absence of FMRP protein causes ovarian insufficiency, which is common among women affected by fragile x syndrome.

"We now know not only which genes are linked to FMRP, but we can locate exactly where they interact," said Ohler. "Down the road, this finding could lead to more detailed genetic tests that take into account the subtle ways that genes get turned on and off."

Physicians who work with fragile X patients know that each patient's abilities and challenges are unique. Some individuals have almost no disability, while others have more severe physical and intellectual disabilities. Approximately 2 percent to 6 percent of children with autism are also diagnosed with fragile X and about one-third of fragile X patients also meet the criteria for autism.

The new discovery should now enable researchers to examine the common molecular pathways leading to all forms of autism. Identification of those pathways could also lead to more targeted treatments for both fragile x and autism.

"We can now look for changes in the FMRP binding sites of genes to identify potential new genetic links to autism-spectrum disorders," said Neelanjan Mukherjee, a Duke post-doctoral scientist who contributed to the research.

In addition to Ohler, Mukherjee and Tuschl, study authors include Manuel Ascano Jr., Pradeep Bandaru, Jason B. Miller, Jeff Nusbaum, David L. Corcoran, Christine Langlois, Mathias Munschauer, Scott Dewell, Markus Hafner and Zev Williams.

The study was funded with grants from the National Institutes of Health (UL1RR024143, R01MH080442), the Howard Hughes Medical Institute, Simons Foundation Autism Research Initiative, and the National Science Foundation. The research team recently received an NIH transformative research award (R01GM104962) that will enable the team to continue its investigation.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Manuel Ascano, Neelanjan Mukherjee, Pradeep Bandaru, Jason B. Miller, Jeffrey D. Nusbaum, David L. Corcoran, Christine Langlois, Mathias Munschauer, Scott Dewell, Markus Hafner, Zev Williams, Uwe Ohler, Thomas Tuschl. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature, 2012; DOI: 10.1038/nature11737

Cite This Page:

Duke University Medical Center. "Fragile X protein linked to nearly 100 genes involved in autism." ScienceDaily. ScienceDaily, 12 December 2012. <www.sciencedaily.com/releases/2012/12/121212134052.htm>.
Duke University Medical Center. (2012, December 12). Fragile X protein linked to nearly 100 genes involved in autism. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/12/121212134052.htm
Duke University Medical Center. "Fragile X protein linked to nearly 100 genes involved in autism." ScienceDaily. www.sciencedaily.com/releases/2012/12/121212134052.htm (accessed October 25, 2014).

Share This



More Mind & Brain News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins