Featured Research

from universities, journals, and other organizations

Engineers roll up their sleeves -- and then do same with inductors

Date:
December 13, 2012
Source:
University of Illinois at Urbana-Champaign
Summary:
On the road to smaller, high-performance electronics, researchers have smoothed one speed bump by shrinking a key, yet notoriously large element of integrated circuits. Three-dimensional rolled-up inductors have a footprint more than 100 times smaller without sacrificing performance. The research team used industry-standard two-dimensional processing to pattern metal lines on a very thin dielectric film before rolling, creating a spiral inductor.

Illinois researchers developed a new design paradigm for inductors. Processed while flat, they then roll up on their own, taking up much less space on a chip.
Credit: Photo by Xiuling Li

On the road to smaller, high-performance electronics, University of Illinois researchers have smoothed one speed bump by shrinking a key, yet notoriously large element of integrated circuits.

Three-dimensional rolled-up inductors have a footprint more than 100 times smaller without sacrificing performance. The researchers published their new design paradigm in the journal Nano Letters.

"It's a new concept for old technology," said team leader Xiuling Li, a professor of electrical and computer engineering at the University of Illinois.

Inductors, often seen as the sprawling metal spirals on computer chips, are essential components of integrated circuits. They store magnetic energy, acting as a buffer against changes in current and modulating frequency -- especially important in radio-frequency wireless devices. However, they take up a lot of space. Inductance depends on the number of coils in the spiral, so engineers cannot make them smaller without losing performance.

In addition, the larger the area the inductor occupies, the more it interfaces with the substrate the chip is built on, exacerbating a hindering effect called parasitic capacitance. Researchers have developed some three-dimensional inductor structures to solve the dual problems of space and parasitic capacitance, but these methods are complex and use techniques that are difficult to scale up to manufacturing levels.

The new inductor design uses techniques Li's group previously developed for making thin films of silicon nitrate, merely tens of nanometers in thickness, that roll themselves up into tubes. The research team used industry-standard two-dimensional processing to pattern metal lines on the film before rolling, creating a spiral inductor.

"We're making 3-D structures with 2-D processing," Li said. "Instead of spreading this out in a large area to increase inductance, we can have the same inductance but packed into a much smaller area."

Using the self-rolling technique, the researchers can shrink the area needed for a radio-frequency inductor to a scant 45 microns by 16 microns -- more than 100 times smaller than the area an equivalent flat spiral would require.

The design can be adjusted to fit target parameters including metal thickness and type, frequency, tube diameter and number of turns. According to Li, this technique could be used for capacitors and other integrated circuit elements as well.

Now, Li's group is working to produce high-performance inductor prototypes, in collaboration with electrical and engineering professor Jose Schutt-Aine. Preliminary experimental data show strong correlation with the modeled designs.

"Once we have optimized this process, we should be able to make an integrated circuit with a completely different platform that could be much smaller," Li said. "It's an ambitious goal."

The National Science Foundation and the Office of Naval Research supported this work. U. of I. visiting researcher Wen Huang, postdoctoral researcher Xin Yu, graduate student Paul Froeter and mechanical science and engineering professor Placid Ferreira were co-authors of this study. Li also is affiliated with the Beckman Institute for Advanced Science and Technology, the Micro and Nanotechnology Lab, and the Frederick Seitz Materials Research Lab, all at the U. of I.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. The original article was written by Liz Ahlberg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wen Huang, Xin Yu, Paul Froeter, Ruimin Xu, Placid Ferreira, Xiuling Li. On-Chip Inductors with Self-Rolled-Up SiNxNanomembrane Tubes: A Novel Design Platform for Extreme Miniaturization. Nano Letters, 2012; 12 (12): 6283 DOI: 10.1021/nl303395d

Cite This Page:

University of Illinois at Urbana-Champaign. "Engineers roll up their sleeves -- and then do same with inductors." ScienceDaily. ScienceDaily, 13 December 2012. <www.sciencedaily.com/releases/2012/12/121213172342.htm>.
University of Illinois at Urbana-Champaign. (2012, December 13). Engineers roll up their sleeves -- and then do same with inductors. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/12/121213172342.htm
University of Illinois at Urbana-Champaign. "Engineers roll up their sleeves -- and then do same with inductors." ScienceDaily. www.sciencedaily.com/releases/2012/12/121213172342.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins