Featured Research

from universities, journals, and other organizations

Study fuels insight into conversion of wood to bio-oil

Date:
December 14, 2012
Source:
North Carolina State University
Summary:
New research provides molecular-level insights into how cellulose -- the most common organic compound on Earth and the main structural component of plant cell walls -- breaks down in wood to create "bio-oils" which can be refined into any number of useful products, including liquid transportation fuels to power a car or an airplane.

A paper that offers insight into converting wood to useful bio-oils appears as the cover article in the Journal of Physical Chemistry A.
Credit: Phillip Westmoreland

New research from North Carolina State University provides molecular-level insights into how cellulose -- the most common organic compound on Earth and the main structural component of plant cell walls -- breaks down in wood to create "bio-oils" which can be refined into any number of useful products, including liquid transportation fuels to power a car or an airplane.

Using a supercomputer that can perform functions thousands of times faster than a standard desktop computer, NC State chemical and biomolecular engineer Dr. Phillip Westmoreland and doctoral student Vikram Seshadri calculate what's occurring at the molecular level when wood is rapidly heated to high temperatures in the absence of oxygen, a decomposition process known as pyrolysis.

The results, which could help spur more effective and efficient ways of converting farmed and waste wood into useful bio-oils, appear in a feature article on the cover of the Dec. 13 print edition of the Journal of Physical Chemistry A.

Much of the energy that can be extracted from wood exists in the cellulose found in cell walls. Cellulose is a stiff, rodlike substance consisting of chains of a specific type of a simple sugar called glucose. The paper describes a mechanism for how glucose decomposes when heated. The mechanism is somewhat surprising, Westmoreland says, because it reveals how water molecules and even the glucose itself can trigger this decomposition.

"The calculations in the paper show that although the decomposition products and rates differ in glucose and cellulose, the various elementary steps appear to be the same, but altered in their relative importance to each other," Westmoreland says.

Knowing the specifics of the decomposition process will allow researchers to make predictions about the ease of extracting energy from different types of wood from various soil types.

The researchers are now conducting experiments to verify their calculations.

The research was funded by the U.S. Department of Energy. The computations were performed on Pittsburgh Supercomputing Center computers.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vikram Seshadri, Phillip R. Westmoreland. Concerted Reactions and Mechanism of Glucose Pyrolysis and Implications for Cellulose Kinetics. The Journal of Physical Chemistry A, 2012; 116 (49): 11997 DOI: 10.1021/jp3085099

Cite This Page:

North Carolina State University. "Study fuels insight into conversion of wood to bio-oil." ScienceDaily. ScienceDaily, 14 December 2012. <www.sciencedaily.com/releases/2012/12/121214112654.htm>.
North Carolina State University. (2012, December 14). Study fuels insight into conversion of wood to bio-oil. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2012/12/121214112654.htm
North Carolina State University. "Study fuels insight into conversion of wood to bio-oil." ScienceDaily. www.sciencedaily.com/releases/2012/12/121214112654.htm (accessed September 23, 2014).

Share This



More Matter & Energy News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
The Hyped-Up Big Bang Discovery Has A Dust Problem

The Hyped-Up Big Bang Discovery Has A Dust Problem

Newsy (Sep. 22, 2014) An analysis of new satellite data casts serious doubt on a previous study about the Big Bang that was once hailed as revolutionary. Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins