Featured Research

from universities, journals, and other organizations

Industrial chemicals: A new breed of stable anti-aromatic compound

Date:
December 18, 2012
Source:
University of Texas at Austin
Summary:
The novel compound is a new chapter in a story that began in 1825, when English scientist Michael Faraday first isolated benzene from gas lights. Benzene would later be identified as one of a class of compounds known as aromatics, which have immense importance in both biological function and industrial production.

By synthesizing a stable "antiaromatic" compound, as well as a never before seen intermediate version of that compound, chemists at The University of Texas at Austin have written an important new chapter in the story of modern chemistry.

The research was done in collaboration with an international roster of colleagues from Yonsei University in Korea, the University of Hyderbad in India, and Osaka University in Japan. The results were published this week in Nature Chemistry.

This particular story began in 1825, when English scientist Michael Faraday first isolated benzene from gas lights. Benzene would later be identified as one of a class of compounds known as aromatics, which have immense importance in both biological function and industrial production.

In humans, for instance, all five nucleotides that constitute DNA and RNA are aromatic. In industry, aromatics derived from oil and coal tar are precursors to, among other things, plastics, solvents, lubricants, rubber, dyes, herbicides, and textiles.

"Benzene is probably the most famous aromatic compound," said Jonathan Sessler, the Rowland Pettit Centennial Chair in Chemistry in the College of Natural Sciences. "But there are many other critically important aromatic species. The heme in hemoglobin, which is what gives blood its red color, is one of a group of aromatics known as porphyrins. Without them we'd have either a very different or no existence."

Aromatic compounds have a ring-like structure that enables electrons to be shared amongst the different bonds between the atoms. This results, among other things, in an extraordinary degree of stability. They tend to persist in their structure under conditions that would cause other molecules to react.

"That's one of the reasons why they're so useful in industry," said Sessler. "It's also why they tend to be pro-carcinogenic. They're very hard for us to metabolize or catabolize, and the results of that are usually not benign. One of the first class of tumors ever observed was testicular cancer. It was highly prevalent among 18th century chimney sweeps, who were exposed to aromatic compounds found in coal tar."

Sessler made his name as a chemist synthesizing new classes of porphyrins, including Texaphyrin, a very large porphyrin, which is being developed as a key element in a potential new approach to treating cancer.

What he and his colleagues have now done is taken an already existing molecule, which was first synthesized by Sessler in 1992, and found a way to stabilize it in its so-called antiaromatic form. Antiaromatic systems are the evil twins of aromatics. Compounds that are antiaromatic have two additional or two fewer electrons than aromatic compounds.

"They don't want to exist in a planar form without giving up or adding the two electrons that distinguish them from their aromatic analogues," said Sessler, "so they tend to twist around, to a lower energy state. That destroys their antiaromaticity. The net result is that bona fide antiaromatic compounds are elusive. What we have done, by rational design, is put big buttressing groups around the compounds, basically clamping them into place."

The resulting compounds are antiaromatic -- with two electrons gone -- and an intermediate something, with both aromatic and antiaromatic properties, that doesn't have a common name yet because it hasn't been seen before.

"When you have to struggle for the words to describe what's being done, you know that it's cutting edge," said Christian Brueckner, a fellow porphyrin chemist and a professor at The University of Connecticut. "Twenty years ago when I was a graduate student I was told simply that you can't make large antiaromatics like this. Later the idea was that you can make them but you can't do much with them. Now you can do it, and it can switch between states, and it can exist in the intermediate state. It's just a beautiful progression of scholarship, a beautiful example of how the ability of chemists to manipulate matter is advancing."

In their natural state antiaromatics are as unstable as aromatics are stable. As a result they have only been stabilized a few times in the history of the field. The antiaromatic that Sessler has made, working with colleagues in Korea, Japan, and India, is significant simply for joining this elite group. As significant is the synthesis of the intermediate state, a scientific first, as well as the capacity of the system to be toggled back and forth between the three different electron states.

"It's the first time you can really do a Coke vs. Pepsi taste test," said Sessler. "We've had very sophisticated theory for a long time, but you need positive and negative controls in science to reach a really robust conclusion. Now we finally have a detailed, controlled comparison of what aromaticity really does, how it changes interactions with light, how it affects color, what an excited state does to the lifetime, and so on."

Sessler's compounds also have potential implications in the field of information storage.

"We are very good as humans at manipulating electrons," said Sessler, "and although this isn't my game at the moment, it's not hard to imagine how a system that has three different electron states, and is reversible, could provide an opportunity to store information in a way we couldn't previously. Binary gives us computers. Ternary could give us even more power."


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin. "Industrial chemicals: A new breed of stable anti-aromatic compound." ScienceDaily. ScienceDaily, 18 December 2012. <www.sciencedaily.com/releases/2012/12/121218081917.htm>.
University of Texas at Austin. (2012, December 18). Industrial chemicals: A new breed of stable anti-aromatic compound. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2012/12/121218081917.htm
University of Texas at Austin. "Industrial chemicals: A new breed of stable anti-aromatic compound." ScienceDaily. www.sciencedaily.com/releases/2012/12/121218081917.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins