Featured Research

from universities, journals, and other organizations

Cancer cells co-opt immune response to escape destruction

Date:
December 18, 2012
Source:
University of California, San Diego Health Sciences
Summary:
Researchers report that tumor cells use stress signals to subvert responding immune cells, exploiting them to actually boost conditions beneficial to cancer growth.

The cartoon represents the consequences of tumor ER stress on components of the adaptive anti-tumor immune response. Under ideal circumstances (left panel), tumor cells and their antigens are picked up by immune cells such as dendritic cells (DC), which in turn instruct T cells (T) to proliferate and eliminate the tumor cells. A different scenario (center panel and right insert) occurs in the growing tumor where tumor micro-environmental factors such as nutrient deprivation or hypoxia create ER stress in tumor cells (TmC). These stressors induce an unfolded protein response (UPR) in tumor cells, which is then transmitted to nearby DC and brainwashes them. Affected dendritic cells no longer coordinate T cells, and impaired T cells no longer proliferate. This inappropriate T cell education hinders the effect of the body’s anti-tumor immune response and allows for unrestrained tumor growth.
Credit: UC San Diego School of Medicine

Researchers at the University of California, San Diego School of Medicine report that tumor cells use stress signals to subvert responding immune cells, exploiting them to actually boost conditions beneficial to cancer growth.

Related Articles


The findings are published in the December 18 online issue of the journal PLOS ONE.

Lead author Navin R. Mahadevan, a graduate student in the Laboratory of Immunology at the UC San Diego Moores Cancer Center, and colleagues found that tumor cells manipulate a fundamental cellular mechanism called unfolded protein response (UPR). In all cells, UPR is used to maintain homeostasis, or equilibrium, in the endoplasmic reticulum (ER) - the cell's protein-making factory. When, for a variety of reasons, a cell is subjected to overwork, ER stress occurs and a compensatory UPR is triggered.

"The goal is to understand how ER stress is transmitted and how this is amplified by receiver cells to attack vulnerable aspects of the immune system," said principal investigator Maurizio Zanetti, MD, who heads the Laboratory of Immunology and is director of Tumor Immunology at the Center for Immunity, Infection and Inflammation at UC San Diego.

"These findings suggest that the tumor UPR should be a target of therapy, not only for its intrinsic function in promoting tumor adaption and survival, but now for its external role in subverting the anti-tumor immune response."

When a UPR response is triggered, one of two things can happen. Either UPR restores homeostasis by slowing cellular processes and synthesizing chaperone molecules to ease the burden on the endoplasmic reticulum or it decides homeostasis can't be restored and the cell is better off dying. The latter is called apoptosis, or programmed cell death.

In research published last year, Zanetti and colleagues found that the UPR is transmissible: It can travel from one cell to another. In normal cells, ER stress is transient with the UPR usually restoring normal function. But cancer cells thrive in an environment in which low oxygen and scarce nutrients, such as glucose, induce continuous ER stress. For them, a sustained ER stress response "offers a survival advantage by promoting cancer cell adaptation, continued growth, and inflammation that is more damaging than healing," Zanetti said.

In the latest study, the scientists found that the transmissible ER stress response (TERS), which emanates from tumor cells experiencing ER stress, alters immune cells in such a way that they no longer function to help fight off cancer. Normally dendritic cells - the sentinels and information couriers of the immune system - train T cells (the immune system's enforcers) to specifically kill foreign entities. In the case of cancer, however, T cells are unable to properly eliminate tumor cells - confounding efforts to develop more effective cancer treatments. The new findings implicate TERS as cancer's siren call. It brainwashes dendritic cells so that they ineffectively communicate with T cells, reducing anti-tumor immunity while increasing tumor growth.

"This is one of the hot topics of contemporary immunology," said Mahadevan. "Our paper shows that TERS - and by inference ER stress in tumor cells - has the ability to negatively affect the sanctuary of the immune response."

Zanetti said the research further elucidates the fundamental processes that tumor cells use - or abuse - to manipulate their local microenvironment to promote their survival and growth. And it points to an area of drug development the pharmaceutical industry will likely focus on over the next decade.

Targeting the UPR, he said, may also help improve efficacy of long-sought cancer vaccines which have thus far been hampered by the ability of cancer cells to subvert the immune response, perhaps through mechanisms like TERS.


Story Source:

The above story is based on materials provided by University of California, San Diego Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Navin R. Mahadevan, Veronika Anufreichik, Jeffrey J. Rodvold, Kevin T. Chiu, Homero Sepulveda, Maurizio Zanetti. Cell-Extrinsic Effects of Tumor ER Stress Imprint Myeloid Dendritic Cells and Impair CD8 T Cell Priming. PLoS ONE, 2012; 7 (12): e51845 DOI: 10.1371/journal.pone.0051845

Cite This Page:

University of California, San Diego Health Sciences. "Cancer cells co-opt immune response to escape destruction." ScienceDaily. ScienceDaily, 18 December 2012. <www.sciencedaily.com/releases/2012/12/121218203319.htm>.
University of California, San Diego Health Sciences. (2012, December 18). Cancer cells co-opt immune response to escape destruction. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2012/12/121218203319.htm
University of California, San Diego Health Sciences. "Cancer cells co-opt immune response to escape destruction." ScienceDaily. www.sciencedaily.com/releases/2012/12/121218203319.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins