Featured Research

from universities, journals, and other organizations

On-demand synaptic electronics: Circuits that learn and forget

Date:
December 20, 2012
Source:
International Center for Materials Nanoarchitectonics (MANA)
Summary:
Researchers in Japan and the US propose a nanoionic device with a range of neuromorphic and electrical multifunctions that may allow the fabrication of on-demand configurable circuits, analog memories and digital–neural fused networks in one device architecture.

(a): Volatile (short-term) memory property of two terminal Pt/WO3-x/Pt device before the forming process. Current change observed by applying sequence of positive voltage pulses at intervals of 40 s and widths of 0.5 s. Read voltage was 0.5 V. (b): Non-volatile (long-term) memory property in the device after forming process following application of sequence of positive and negative pulses with widths of 0.1 ms. Read voltage was 0.1 V. (c): Schematic illustration of the device structures before and after forming process.
Credit: Image courtesy of International Center for Materials Nanoarchitectonics (MANA)

Researchers in Japan and the US propose a nanoionic device with a range of neuromorphic and electrical multifunctions that may allow the fabrication of on-demand configurable circuits, analog memories and digital-neural fused networks in one device architecture.

Synaptic devices that mimic the learning and memory processes in living organisms are attracting avid interest as an alternative to standard computing elements that may help extend Moore's law beyond current physical limits.

However so far artificial synaptic systems have been hampered by complex fabrication requirements and limitations in the learning and memory functions they mimic. Now Rui Yang, Kazuya Terabe and colleagues at the National Institute for Materials Science in Japan and the University of California, Los Angeles, in the US have developed two-, three-terminal WO3-x-based nanoionic devices capable of a broad range of neuromorphic and electrical functions.

In its initial pristine condition the system has very high resistance values. Sweeping both negative and positive voltages across the system decreases this resistance nonlinearly, but it soon returns to its original state indicating a volatile state. Applying either positive or negative pulses at the top electrode introduces a soft-breakdown, after which sweeping both negative and positive voltages leads to non-volatile states that exhibit bipolar resistance and rectification for longer periods of time.

The researchers draw similarities between the device properties -- volatile and non-volatile states and the current fading process following positive voltage pulses -- with models for neural behaviour -- that is, short- and long-term memory and forgetting processes. They explain the behaviour as the result of oxygen ions migrating within the device in response to the voltage sweeps. Accumulation of the oxygen ions at the electrode leads to Schottky-like potential barriers and the resulting changes in resistance and rectifying characteristics. The stable bipolar switching behaviour at the Pt/WO3-x interface is attributed to the formation of the electric conductive filament and oxygen absorbability of the Pt electrode.

As the researchers conclude, "These capabilities open a new avenue for circuits, analog memories, and artificially fused digital neural networks using on-demand programming by input pulse polarity, magnitude, and repetition history."


Story Source:

The above story is based on materials provided by International Center for Materials Nanoarchitectonics (MANA). Note: Materials may be edited for content and length.


Journal Reference:

  1. Rui Yang, Kazuya Terabe, Guangqiang Liu, Tohru Tsuruoka, Tsuyoshi Hasegawa, James K. Gimzewski, Masakazu Aono. On-Demand Nanodevice with Electrical and Neuromorphic Multifunction Realized by Local Ion Migration. ACS Nano, 2012; 6 (11): 9515 DOI: 10.1021/nn302510e

Cite This Page:

International Center for Materials Nanoarchitectonics (MANA). "On-demand synaptic electronics: Circuits that learn and forget." ScienceDaily. ScienceDaily, 20 December 2012. <www.sciencedaily.com/releases/2012/12/121220161427.htm>.
International Center for Materials Nanoarchitectonics (MANA). (2012, December 20). On-demand synaptic electronics: Circuits that learn and forget. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/12/121220161427.htm
International Center for Materials Nanoarchitectonics (MANA). "On-demand synaptic electronics: Circuits that learn and forget." ScienceDaily. www.sciencedaily.com/releases/2012/12/121220161427.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins