Featured Research

from universities, journals, and other organizations

How songbirds learn to sing: Mathematical model explains how birds correct mistakes to stay on key

Date:
December 20, 2012
Source:
Emory University
Summary:
Scientists studying how songbirds stay on key have developed a statistical explanation for why some things are harder for the brain to learn than others, building the first mathematical model that uses a bird's previous sensorimotor experience to predict its ability to learn. Their results show that adult birds correct small errors in their songs more rapidly and robustly than large errors.

A Bengalese finch outfitted with headphones. Research on how the birds learn to sing may lead to better human therapies for vocal rehabilitation.
Credit: Image courtesy of Emory University

Scientists studying how songbirds stay on key have developed a statistical explanation for why some things are harder for the brain to learn than others.

Related Articles


"We've built the first mathematical model that uses a bird's previous sensorimotor experience to predict its ability to learn," says Emory biologist Samuel Sober. "We hope it will help us understand the math of learning in other species, including humans."

Sober conducted the research with physiologist Michael Brainard of the University of California, San Francisco.

Their results, showing that adult birds correct small errors in their songs more rapidly and robustly than large errors, were published in the Proceedings of the National Academy of Sciences (PNAS).

Sober's lab uses Bengalese finches as a model for researching the mechanisms of how the brain learns to correct vocal mistakes.

Just like humans, baby birds learn to vocalize by listening to adults. Days after hatching, Bengalese finches start imitating the sounds of adults. "At first, their song is extremely variable and disorganized," Sober says. "It's baby talk, basically."

The young finches keep practicing, listening to their own sounds and fixing any mistakes that occur, until eventually they can sing like their elders.

Young birds, and young humans, make a lot of big mistakes as they learn to vocalize. As birds and humans get older, the variability of mistakes shrinks. One theory contends that adult brains tend to screen out big mistakes and pay more attention to smaller ones.

"To correct any mistake, the brain has to rely on the senses," Sober explains. "The problem is, the senses are unreliable. If there is noise in the environment, for example, the brain may think it misheard and ignore the sensory experience."

The link between variability and learning may explain why youngsters tend to learn faster and why adults are more resistant to change.

"Whether you are an opera singer or a bird, there is always variability in your sounds," Sober says. "When the brain receives an error in pitch, it seems to use this very simple and elegant strategy of evaluating the probability of whether the error was just extraneous 'noise,' a problem reading the signal, or an actual mistake in the vocalization."

The researchers wanted to quantify the relationship between the size of a vocal error, and the probability of the brain making a sensorimotor correction. The experiments were conducted on adult Bengalese finches outfitted with light-weight, miniature headphones.

As a bird sang into a microphone, the researchers used sound-processing equipment to trick the bird into thinking it was making vocal mistakes, by changing the bird's pitch and altering the way the bird heard itself, in real-time.

"When we made small pitch shifts, the birds learned really well and corrected their errors rapidly," Sober says. "As we made the pitch shifts bigger, the birds learned less well, until at a certain pitch, they stopped learning."

The researchers used the data to develop a statistical model for the size of a vocal error and whether a bird learns, including the cut-off point for learning from sensorimotor mistakes. They are now developing additional experiments to test and refine the model.

"We hope that our mathematical framework for how songbirds learn to sing could help in the development of human behavioral therapies for vocal rehabilitation, as well as increase our general understanding of how the brain learns," Sober says.

The research was supported by grants from the National Institute of Deafness and Communications Disorders, the National Institute of Neurological Diseases and Stroke and the National Institute of Mental Health.


Story Source:

The above story is based on materials provided by Emory University. The original article was written by Carol Clark. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. J. Sober, M. S. Brainard. Vocal learning is constrained by the statistics of sensorimotor experience. Proceedings of the National Academy of Sciences, 2012; 109 (51): 21099 DOI: 10.1073/pnas.1213622109

Cite This Page:

Emory University. "How songbirds learn to sing: Mathematical model explains how birds correct mistakes to stay on key." ScienceDaily. ScienceDaily, 20 December 2012. <www.sciencedaily.com/releases/2012/12/121220171836.htm>.
Emory University. (2012, December 20). How songbirds learn to sing: Mathematical model explains how birds correct mistakes to stay on key. ScienceDaily. Retrieved April 24, 2015 from www.sciencedaily.com/releases/2012/12/121220171836.htm
Emory University. "How songbirds learn to sing: Mathematical model explains how birds correct mistakes to stay on key." ScienceDaily. www.sciencedaily.com/releases/2012/12/121220171836.htm (accessed April 24, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, April 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dispute Flares Over Controversial Thai Temple Tigers

Dispute Flares Over Controversial Thai Temple Tigers

AFP (Apr. 24, 2015) Thai wildlife officials begin a headcount of nearly 150 tigers kept by monks at a temple which has become the centre of a dispute over the welfare of the animals. Video provided by AFP
Powered by NewsLook.com
College Kegger: University Gets in on Craft Brew

College Kegger: University Gets in on Craft Brew

AP (Apr. 24, 2015) Theres never been a shortage of beer on college campuses. But students at Cal Poly-Pomona are learning how to brew, serving their product to classmates, and hoping to land jobs in craft breweries when they graduate. (April 24) Video provided by AP
Powered by NewsLook.com
Cambodian Butterflies Help Villagers Make a Living

Cambodian Butterflies Help Villagers Make a Living

AFP (Apr. 24, 2015) Cambodia&apos;s Banteay Srey Butterfly Centre is the largest of its kind in Southeast Asia. As well as educating tourists about the creatures, it also offers a source of income to nearby villagers, who are paid to breed local species. Duration: 02:04 Video provided by AFP
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins