Featured Research

from universities, journals, and other organizations

Canadian experiment to track space radiation and its risks

Date:
December 20, 2012
Source:
Canadian Space Agency
Summary:
Space can be a potentially hazardous environment to live and work in, especially when it comes to radiation. Originating from violent storms on the Sun and galactic cosmic rays produced in distant supernovae explosions, this natural radiation can pose a serious health risk for astronauts on long-duration space missions like those on the International Space Station (ISS). To prepare for future missions that may last for months or years, the Canadian Space Agency (CSA), along with other space agencies around the world, have been stepping up research into radiation biology in recent years, recognizing that it deserves the highest priority.

Radi-N2 bubble detectors are filled with a gel, inside which are liquid droplets that help quantify neutron radiation inside the International Space Station (ISS).
Credit: Canadian Space Agency

Space can be a potentially hazardous environment to live and work in, especially when it comes to radiation. Originating from violent storms on the Sun and galactic cosmic rays produced in distant supernovae explosions, this natural radiation can pose a serious health risk for astronauts on long-duration space missions like those on the International Space Station (ISS).

Like a protective bubble, Earth's atmosphere and magnetosphere shields life on our planet from this never-ending bombardment of high-energy particles. However, in low-Earth orbit where the International Space Station (ISS) flies, astronauts are regularly exposed to high doses of radiation, including charged particles trapped in Earth's magnetic field, as well as cosmic rays and solar radiation.

To prepare for future missions that may last for months or years, the Canadian Space Agency (CSA), along with other space agencies around the world, have been stepping up research into radiation biology in recent years, recognizing that it deserves the highest priority.

During CSA astronaut Chris Hadfield's mission to the ISS, he will carry a new set of instruments into orbit to measure one of the most serious types of radiation -- caused by high-energy neutron particles -- and monitor the dose an astronaut absorbs during space flight.

What is Neutron Radiation?

Neutron radiation is considered to be one of the most severe of all types of radiation experienced in space as it can cause biological damage. It represents approximately 30% of the total exposure for those aboard the ISS. In space, neutrons are produced when charged particles collide with physical matter, such as the walls and equipment on the ISS. Just like medical X-rays, these high-energy particles can shoot through delicate body tissues, and through long-term exposure, they can damage DNA and potentially cause cataracts, bone marrow damage or even cancer.

It's all in the bubbles -- Bubbles and Radiation Trouble

Radi-N2 is Canada's second generation of neutron radiation monitoring aboard the ISS and continues on where fellow Canadian astronaut Robert Thirsk and the original Radi-N experiment left off in 2009.

A collaborative effort between the CSA and Russia's RSC-Energia and State Research Center of Russia Institute of Biomedical Problems (IBMP) Russian Academy of Sciences, the Radi-N2 study will have Chris Hadfield and fellow crewmember Roman Romanenko measure the neutron radiation levels on the station while onboard the ISS for Expedition 34/35.

Radi-N2 uses bubble detectors produced by a Canadian company, Bubble Technology IndustriesExternal link, Opens in a new window of Chalk River, Ontario, designed to focus on detecting neutrons while ignoring other types of radiation. Bubble detectors have been used in space for more than two decades on space shuttle missions and the MIR space station, and have become popular because of their accuracy and convenience.

Eight of these finger-sized instruments are going to be placed by Hadfield and Romanenko around various ISS modules. Each detector is filled with a clear polymer gel, inside which are liquid droplets. When a neutron strikes the test tube, a droplet may be vaporized. This creates a visible gas bubble in the polymer. Each bubble, which represents neutron radiation, is then placed within an automatic reader and counted.

Radi-N2 will provide critical information for potential future human missions to the moon, asteroids and eventually Mars.

The CSA's support of radiation research will not only lead to major advancements for future human exploration of space but also in our knowledge of the health risks of radiation, such as cancer, neurological damage and degenerative tissue disease.


Story Source:

The above story is based on materials provided by Canadian Space Agency. Note: Materials may be edited for content and length.


Cite This Page:

Canadian Space Agency. "Canadian experiment to track space radiation and its risks." ScienceDaily. ScienceDaily, 20 December 2012. <www.sciencedaily.com/releases/2012/12/121220212917.htm>.
Canadian Space Agency. (2012, December 20). Canadian experiment to track space radiation and its risks. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2012/12/121220212917.htm
Canadian Space Agency. "Canadian experiment to track space radiation and its risks." ScienceDaily. www.sciencedaily.com/releases/2012/12/121220212917.htm (accessed August 30, 2014).

Share This




More Space & Time News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins