Featured Research

from universities, journals, and other organizations

New understanding of nerve damage caused by spinal cord injury could improve treatment design

Date:
January 3, 2013
Source:
Mary Ann Liebert, Inc., Publishers
Summary:
More than half of traumatic spinal cord injuries (SCI) in humans are cervical lesions, resulting in chronic loss of limb function. A better understanding of the link between the neurologic damage caused by SCI, spontaneous motor function recovery, and long-term motor deficits would lead to better therapeutic approaches, new research suggests.

More than half of traumatic spinal cord injuries (SCI) in humans are cervical lesions, resulting in chronic loss of limb function. A better understanding of the link between the neurologic damage caused by SCI, spontaneous motor function recovery, and long-term motor deficits would lead to better therapeutic approaches, as discussed in an article in Journal of Neurotrauma.

About 70% of human traumatic SCIs are incomplete, but the destruction of critical nerve fibers disrupts the signals normally sent between the brain and spinal cord beyond the site of the injury, resulting in locomotor impairment and paralysis. Elisa López-Dolado, Ana Lucas-Osma, and Jorge Collazos-Castro, Hospital Nacional de Parapléjicos Finca La Peraleda, Toledo, Spain, simulated a C6 partial SCI in adult rats and analyzed their recovery of motor function over four months.

The authors report extensive kinetic, anatomical, and electrophysiological data that demonstrate how the animals compensate for the permanent loss of some motor function. In the article "Dynamic Motor Compensations with Permanent, Focal Loss of Forelimb Force after Cervical Spinal Cord Injury," they propose that a premotoneuronal system in the cervical spine may be involved in the production and chronic nature of limb impairment, which could have important implications for the design of future treatment methods.

"This paper is important to the spinal cord injury field because it provides a comprehensive assessment of motor performance up to four months after cervical spinal cord injury," says Deputy Editor of Journal of Neurotrauma W. Dalton Dietrich, III, PhD, Scientific Director, The Miami Project to Cure Paralysis, and Kinetic Concepts Distinguished Chair in Neurosurgery, Professor of Neurological Surgery, Neurology and Cell Biology at University of Miami Leonard M. Miller School of Medicine, Lois Pope LIFE Center. "Force and kinematic data identifying progressive sensorimotor compensatory processes indicate new targets for therapeutic strategies to promote recovery and repair."


Story Source:

The above story is based on materials provided by Mary Ann Liebert, Inc., Publishers. Note: Materials may be edited for content and length.


Journal Reference:

  1. Elisa López-Dolado, Ana M. Lucas-Osma, Jorge E. Collazos-Castro. Dynamic Motor Compensations with Permanent, Focal Loss of Forelimb Force after Cervical Spinal Cord Injury. Journal of Neurotrauma, 2012; 121221100659007 DOI: 10.1089/neu.2012.2530

Cite This Page:

Mary Ann Liebert, Inc., Publishers. "New understanding of nerve damage caused by spinal cord injury could improve treatment design." ScienceDaily. ScienceDaily, 3 January 2013. <www.sciencedaily.com/releases/2013/01/130103130956.htm>.
Mary Ann Liebert, Inc., Publishers. (2013, January 3). New understanding of nerve damage caused by spinal cord injury could improve treatment design. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2013/01/130103130956.htm
Mary Ann Liebert, Inc., Publishers. "New understanding of nerve damage caused by spinal cord injury could improve treatment design." ScienceDaily. www.sciencedaily.com/releases/2013/01/130103130956.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) — Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) — A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) — A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins