Featured Research

from universities, journals, and other organizations

Dimmer switch for regulating cell's read of DNA code

Date:
January 9, 2013
Source:
Perelman School of Medicine at the University of Pennsylvania
Summary:
Researchers have been studying the epigenetics enzyme HDAC3 for several years. They discovered that its activity requires interaction with a specific region on another protein called the Deacetylase Activating Domain. This "nuts and bolts" discovery on the epigenetic control of a person’s genome has implications for cancer and neurological treatments.

Model showing that enzyme activity of HDAC3 requires interaction with a specific region on another protein, dubbed the Deacetylase Activating Domain or "DAD."
Credit: Mitch Lazar, MD, PhD, Perelman School of Medicine

Epigenetics -- the science of how gene activity can be altered without changes in the genetic code -- plays a critical role in every aspect of life, from the differentiation of stem cells to the regulation of metabolism and growth of cancer cells.

Related Articles


Epigenetic factors act by reworking the structure in which genes reside, called chromatin. Inside chromatin, DNA is wound around proteins called histones. Several new cancer treatments interfere with the function of enzymes that chemically mark the histones to alter the readout of the DNA code and ramp the expression of genes up or down, as if with a dimmer switch. Enzymes called histone deacetylases (HDACs) erase the mark and shut off gene expression.

A team led by Mitchell A. Lazar, M.D., Ph.D., director of the Institute for Diabetes, Obesity, and Metabolism at the Perelman School of Medicine, University of Pennsylvania, has been studying HDAC3 for several years. They discovered that the enzyme activity of HDAC3 requires interaction with a specific region on another protein, which they dubbed the Deacetylase Activating Domain or "DAD." This "nuts and bolts" discovery on the epigenetic control of a person's genome has implications for cancer and neurological treatments.

This domain is found only in proteins that are nuclear receptor corepressors (NCoR1 and NCOR2), which assist receptor proteins in the nucleus to downregulate gene expression.

The team showed that HDAC3 enzyme activity is undetectable in mice bearing mutations in the DAD of both NCOR1 and NCOR2, also called SMRT, despite having normal levels of HDAC3 protein. The findings were published this week in Nature Structural & Molecular Biology.

HDAC3 is required for normal mouse development and tissue-specific functions. In cell culture studies, the HDAC3 protein itself has minimal enzyme activity but gains its histone-deacetylation function from stable association with the DAD.

"We developed a unique mouse model to directly test whether HDAC3 absolutely requires NCOR1 and/or SMRT to be activated," says Lazar. "The answer is yes." The results clearly show that, although tissue levels of HDAC3 are normal in this mouse model, the protein does not have detectable enzyme activity in embryos and various tissues of the engineered mice.

Surprisingly, the engineered mice are born and live to adulthood, whereas genetic absence of HDAC3 is lethal to the mice before they are born. This suggests that HDAC3 may have a deacetylase-independent function which, Lazar says, "is potentially of major importance, because HDAC inhibitors are currently used clinically to treat cancer, and are in clinical development for neurological illnesses and other disorders. We are working hard in the lab to sort this out."

Co-authors are Seo-Hee You, Hee-Woong Lim, Zheng Sun, Molly Broache, and Kyoung-Jae Won, all from Penn. The research was supported in part by the National Institute of Diabetes, and Digestive and Kidney Diseases (R37DK43806) and a Mentor Based Fellowship from the American Diabetes Association.


Story Source:

The above story is based on materials provided by Perelman School of Medicine at the University of Pennsylvania. Note: Materials may be edited for content and length.


Journal Reference:

  1. Seo-Hee You, Hee-Woong Lim, Zheng Sun, Molly Broache, Kyoung-Jae Won, Mitchell A Lazar. Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3in vivo. Nature Structural & Molecular Biology, 2013; DOI: 10.1038/nsmb.2476

Cite This Page:

Perelman School of Medicine at the University of Pennsylvania. "Dimmer switch for regulating cell's read of DNA code." ScienceDaily. ScienceDaily, 9 January 2013. <www.sciencedaily.com/releases/2013/01/130109151118.htm>.
Perelman School of Medicine at the University of Pennsylvania. (2013, January 9). Dimmer switch for regulating cell's read of DNA code. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/01/130109151118.htm
Perelman School of Medicine at the University of Pennsylvania. "Dimmer switch for regulating cell's read of DNA code." ScienceDaily. www.sciencedaily.com/releases/2013/01/130109151118.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins