Featured Research

from universities, journals, and other organizations

Death on a nanometer scale: Study measures holes antibacterials create in cell walls

Date:
January 10, 2013
Source:
Georgia Institute of Technology
Summary:
Researchers have created a biophysical model of the response of a Gram-positive bacterium to the formation of a hole in its cell wall, then used experimental measurements to validate the theory.

This is a transmission electron microscopy image ofa Streptococcus pyogenes cell experiencing lysis after exposure to the highly active enzyme PlyC.
Credit: Daniel Nelson, UMD

The rise of antibiotic-resistant bacteria has initiated a quest for alternatives to conventional antibiotics. One potential alternative is PlyC, a potent enzyme that kills the bacteria that causes strep throat and streptococcal toxic shock syndrome. PlyC operates by locking onto the surface of a bacteria cell and chewing a hole in the cell wall large enough for the bacteria's inner membrane to protrude from the cell, ultimately causing the cell to burst and die.

Related Articles


Research has shown that alternative antimicrobials such as PlyC can effectively kill bacteria. However, fundamental questions remain about how bacteria respond to the holes that these therapeutics make in their cell wall and what size holes bacteria can withstand before breaking apart. Answering those questions could improve the effectiveness of current antibacterial drugs and initiate the development of new ones.

Researchers at the Georgia Institute of Technology and the University of Maryland recently conducted a study to try to answer those questions. The researchers created a biophysical model of the response of a Gram-positive bacterium to the formation of a hole in its cell wall. Then they used experimental measurements to validate the theory, which predicted that a hole in the bacteria cell wall larger than 15 to 24 nanometers in diameter would cause the cell to lyse, or burst. These small holes are approximately one-hundredth the diameter of a typical bacterial cell.

"Our model correctly predicted that the membrane and cell contents of Gram-positive bacteria cells explode out of holes in cell walls that exceed a few dozen nanometers. This critical hole size, validated by experiments, is much larger than the holes Gram-positive bacteria use to transport molecules necessary for their survival, which have been estimated to be less than 7 nanometers in diameter," said Joshua Weitz, an associate professor in the School of Biology at Georgia Tech. Weitz also holds an adjunct appointment in the School of Physics at Georgia Tech.

The study was published online on Jan. 9, 2013 in the Journal of the Royal Society Interface. The work was supported by the James S. McDonnell Foundation and the Burroughs Wellcome Fund.

Common Gram-positive bacteria that infect humans include Streptococcus, which causes strep throat; Staphylococcus, which causes impetigo; and Clostridium, which causes botulism and tetanus. Gram-negative bacteria include Escherichia, which causes urinary tract infections; Vibrio, which causes cholera; and Neisseria, which causes gonorrhea.

Gram-positive bacteria differ from Gram-negative bacteria in the structure of their cell walls. The cell wall constitutes the outer layer of Gram-positive bacteria, whereas the cell wall lies between the inner and outer membrane of Gram-negative bacteria and is therefore protected from direct exposure to the environment.

Georgia Tech biology graduate student Gabriel Mitchell, Georgia Tech physics professor Kurt Wiesenfeld and Weitz developed a biophysical theory of the response of a Gram-positive bacterium to the formation of a hole in its cell wall. The model detailed the effect of pressure, bending and stretching forces on the changing configuration of the cell membrane due to a hole. The force associated with bending and stretching pulls the membrane inward, while the pressure from the inside of the cell pushes the membrane outward through the hole.

"We found that bending forces act to keep the membrane together and push it back inside, but a sufficiently large hole enables the bending forces to be overpowered by the internal pressure forces and the membrane begins to escape out and the cell contents follow," said Weitz.

The balance between the bending and pressure forces led to the model prediction that holes 15 to 24 nanometers in diameter or larger would cause a bacteria cell to burst. To test the theory, Daniel Nelson, an assistant professor at the University of Maryland, used transmission electron microscopy images to measure the size of holes created in lysed Streptococcus pyogenes bacteria cells following PlyC exposure.

Nelson found holes in the lysed bacteria cells that ranged in diameter from 22 to 180 nanometers, with a mean diameter of 68 nanometers. These experimental measurements agreed with the researchers' theoretical prediction of critical hole sizes that cause bacterial cell death.

According to the researchers, their theoretical model is the first to consider the effects of cell wall thickness on lysis.

"Because lysis events occur most often at thinner points in the cell wall, cell wall thickness may play a role in suppressing lysis by serving as a buffer against the formation of large holes," said Mitchell.

The combination of theory and experiments used in this study provided insights into the effect of defects on a cell's viability and the mechanisms used by enzymes to disrupt homeostasis and cause bacteria cell death. To further understand the mechanisms behind enzyme-induced lysis, the researchers plan to measure membrane dynamics as a function of hole geometry in the future.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. The original article was written by Abby Robinson. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. J. Mitchell, K. Wiesenfeld, D. C. Nelson, J. S. Weitz. Critical cell wall hole size for lysis in Gram-positive bacteria. Journal of The Royal Society Interface, 2013; 10 (80): 20120892 DOI: 10.1098/rsif.2012.0892

Cite This Page:

Georgia Institute of Technology. "Death on a nanometer scale: Study measures holes antibacterials create in cell walls." ScienceDaily. ScienceDaily, 10 January 2013. <www.sciencedaily.com/releases/2013/01/130110094324.htm>.
Georgia Institute of Technology. (2013, January 10). Death on a nanometer scale: Study measures holes antibacterials create in cell walls. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2013/01/130110094324.htm
Georgia Institute of Technology. "Death on a nanometer scale: Study measures holes antibacterials create in cell walls." ScienceDaily. www.sciencedaily.com/releases/2013/01/130110094324.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins