Featured Research

from universities, journals, and other organizations

Cancer cell metabolism study yields new insights on leukemia

Date:
January 17, 2013
Source:
University of Rochester Medical Center
Summary:
Scientists have proposed a new reason why acute myeloid leukemia, one of the most aggressive cancers, is so difficult to cure: A subset of cells that drive the disease appear to have a much slower metabolism than most other tumors cells.

University of Rochester Medical Center scientists have proposed a new reason why acute myeloid leukemia, one of the most aggressive cancers, is so difficult to cure: a subset of cells that drive the disease appear to have a much slower metabolism than most other tumors cells.

The slower metabolism protects leukemia cells in many important ways and allows them to survive better -- but the team also found an experimental drug tailored to this unique metabolic status and has begun testing its ability to attack the disease, URMC researchers report in the Jan. 17, 2013, online edition of Cell Stem Cell.

As a result, the study's corresponding author, Craig T. Jordan, Ph.D., is working on forming a partnership with a drug-maker to conduct further testing in this arena. The compound under laboratory study has already been used in clinical trials.

"Targeting metabolism of leukemia stem cells is a unique approach that we believe has the potential to be broadly applied to several forms of leukemia," said Jordan, the Philip and Marilyn Wehrheim Professor at the James P. Wilmot Cancer Center at URMC. "An exciting part of our work is that because we've identified drugs that are being developed for clinical use, we hope there is significant potential to improve the care of leukemia patients relatively soon."

Lead investigator Eleni Lagadinou, M.D., Ph.D., a post-doctoral fellow in Jordan's laboratory, said that when the team discovered that the metabolism of leukemia stem cells was so different from the rest of the tumor cells, they focused their efforts on exactly how that process works.

They found that leukemia stem cells generate all the energy they need in a cellular powerhouse called the mitochondrion, by way of a single process, known as oxidative phosphorylation. In contrast, other cancer cells and normal stem cells also rely on a second fuel source, known as glycolysis, to generate energy.

With this new information, researchers then explored the pathways involved in oxidative phophorylation, with an eye toward finding an Achilles' heel to stop the process. They discovered that an important gene, BCL-2, is elevated and central to leukemia stem cell energy production.

The team also knew that drugs to inhibit BCL-2 are in various stages of development in the pharmaceutical industry; Lagadinou and Jordan found two such compounds and tested them in human leukemia specimens. Their findings showed the drugs preferentially killed inactive and metabolically slower leukemia stem cells.

Leukemia is known for its ability to lie dormant for long periods, despite treatment, but then suddenly begin another assault.

"This treatment shows promise toward a dormant leukemic stem cell subpopulation that is relatively untouched by conventional drugs," Lagadinou said. "It's also important to note that normal cells were not harmed by the compounds, because they can use alternative pathways to generate energy."

Without the toxicity to healthy cells, researchers hope they can target the disease during periods of remission, when mopping up residual leukemia is essential.

Leukemia is a blood cancer with four common types: acute myelogenous leukemia (AML), acute lymphoblastic (ALL), chronic myeloid leukemia (CML), and chronic lymphoblastic (CLL). AML is most common in adults and the most difficult to treat, in part because it affects immature cells. Nearly 50,000 new cases are diagnosed each year, with about half resulting in death.

Investigators have learned during the past decade that many therapies were not designed to kill the root of leukemia, the so called "leukemia stem cells," and therefore never truly eliminate the disease.

In fact, even the most modern cancer treatments were developed under the assumption that all cancer metabolism relies on glycolysis as a fuel source. This makes the URMC study -- and the discovery that oxidative phosphorylation is the single fuel source for leukemia stem cells -- all the more relevant for suggesting new and improved treatments, Jordan said.

He is a national leader in the investigation of leukemia stem cells and the search for currently available drugs that selectively target them. Grants from the Leukemia and Lymphoma Society, National Institutes of Health, and New York State Stem Cell Science funded the current study.


Story Source:

The above story is based on materials provided by University of Rochester Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. EleniD. Lagadinou, Alexander Sach, Kevin Callahan, RandallM. Rossi, SarahJ. Neering, Mohammad Minhajuddin, JohnM. Ashton, Shanshan Pei, Valerie Grose, KristenM. O’Dwyer, JaneL. Liesveld, PaulS. Brookes, MichaelW. Becker, CraigT. Jordan. BCL-2 Inhibition Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Cell Stem Cell, 2013; DOI: 10.1016/j.stem.2012.12.013

Cite This Page:

University of Rochester Medical Center. "Cancer cell metabolism study yields new insights on leukemia." ScienceDaily. ScienceDaily, 17 January 2013. <www.sciencedaily.com/releases/2013/01/130117133136.htm>.
University of Rochester Medical Center. (2013, January 17). Cancer cell metabolism study yields new insights on leukemia. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2013/01/130117133136.htm
University of Rochester Medical Center. "Cancer cell metabolism study yields new insights on leukemia." ScienceDaily. www.sciencedaily.com/releases/2013/01/130117133136.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins