Featured Research

from universities, journals, and other organizations

Novel sensor provides bigger picture: Efficient, flexible, versatile and cheap

Date:
January 17, 2013
Source:
Duke University
Summary:
Engineers have developed a novel sensor that is more efficient, versatile and cheaper for potential use in such applications as airport security scanners and collision avoidance systems for aircraft, cars or maritime vessels. The material is flexible and durable enough to be attached to a wall, wrapped around corners or even laid on the floor like a rug, making it an inexpensive alternative for a variety of sensing applications.

This shows John Hunt, left, and Tom Driscoll.
Credit: Duke University Photography

Duke University engineers have developed a novel sensor that is more efficient, versatile and cheaper for potential use in such applications as airport security scanners and collision avoidance systems for aircraft, cars or maritime vessels.

Related Articles


The researchers fabricated a unique material, known as a metamaterial, that acts as a lens to image scenes using fewer components than conventional detectors. Because of the properties of this human-made material, much of the additional equipment needed for conventional detector systems -- like lenses, mechanical positioners and data storage or transmissions devices -- are not required.

The material itself is a thin laminate with row-upon-row of tiny squares etched onto copper, each one of which is tuned to a different frequency of light. The material is flexible and durable enough to be attached to a wall, wrapped around corners or even laid on the floor like a rug, making it an inexpensive alternative for a variety of sensing applications.

The new system works with microwave light and produces two-dimensional images. The researchers are currently exploring moving the technology to three-dimensional capability in real-world settings.

The Duke researchers reported their findings Jan. 18 online in the journal Science. The research was supported by the Air Force Office of Scientific Research.

"By taking advantage of the unique properties of these metamaterials, we were able to create a system capable of microwave imaging without lenses or any moving parts, " said John Hunt, a graduate student working in the laboratory of senior investigator David R. Smith, William Bevan Professor of electrical and computer engineering at Duke's Pratt School of Engineering.

As an example, Hunt said that in many security situations, imaging systems move a single sensor device with a small aperture in front of the body of the subject, creating an effectively larger aperture. The scanning waves travel through clothing, but skin or other objects reflect the waves. The new device can scan the entire field at once, which would allow for faster and more efficient screening, the researchers said.

"Using conventional systems such as airport security cameras or collision-detection devices, you have to wait for a scan to complete before you can see an image, while the new system can scan an entire range at once," Hunt said.

The metamaterial is made of thousands of tiny apertures that can detect a wide spectrum of frequencies, allowing it to obtain a more global image of the scene, the researchers said.

"Each individual element of the metamaterial is tuned to narrow frequency," said Tom Driscoll, a post-doctoral fellow from the University of California -- San Diego currently working in the Smith lab. "Together the individual elements scan the entire range to capture information about a scene very quickly."

"This system allows us to collect and compress the image during collection, instead of later, averting the detector, storage and transmission costs associated with conventional imaging of a scene," Driscoll said.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, D. R. Smith. Metamaterial Apertures for Computational Imaging. Science, 2013; 339 (6117): 310 DOI: 10.1126/science.1230054

Cite This Page:

Duke University. "Novel sensor provides bigger picture: Efficient, flexible, versatile and cheap." ScienceDaily. ScienceDaily, 17 January 2013. <www.sciencedaily.com/releases/2013/01/130117142550.htm>.
Duke University. (2013, January 17). Novel sensor provides bigger picture: Efficient, flexible, versatile and cheap. ScienceDaily. Retrieved January 24, 2015 from www.sciencedaily.com/releases/2013/01/130117142550.htm
Duke University. "Novel sensor provides bigger picture: Efficient, flexible, versatile and cheap." ScienceDaily. www.sciencedaily.com/releases/2013/01/130117142550.htm (accessed January 24, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, January 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins