Featured Research

from universities, journals, and other organizations

Study of how eye cells become damaged could help prevent blindness

Date:
January 22, 2013
Source:
Cell Press
Summary:
A new study provides new insight into the mechanical properties that cause the outer segment of light-sensing cells in the eye to snap under pressure. The new experimental and theoretical findings help to explain the origin of severe eye diseases and could lead to new ways of preventing blindness.

This image shows a breaking rod series.
Credit: Haeri et al.

Light-sensing cells in the eye rely on their outer segment to convert light into neural signals that allow us to see. But because of its unique cylindrical shape, the outer segment is prone to breakage, which can cause blindness in humans.

Related Articles


A study published by Cell Press on January 22nd in the Biophysical Journal provides new insight into the mechanical properties that cause the outer segment to snap under pressure. The new experimental and theoretical findings help to explain the origin of severe eye diseases and could lead to new ways of preventing blindness.

"To our knowledge, this is the first theory that explains how the structural rigidity of the outer segment can make it prone to damage," says senior study author Aphrodite Ahmadi of the State University of New York Cortland. "Our theory represents a significant advance in our understanding of retinal degenerative diseases."

The outer segment of photoreceptors consists of discs packed with a light-sensitive protein called rhodopsin. Discs made at nighttime are different from those produced during the day, generating a banding pattern that was first observed in frogs but is common across species. Mutations that affect photoreceptors often destabilize the outer segment and may damage its discs, leading to cell death, retinal degeneration, and blindness in humans. But until now, it was unclear which structural properties of the outer segment determine its susceptibility to damage.

To address this question, Ahmadi and her team examined tadpole photoreceptors under the microscope while subjecting them to fluid forces. They found that high-density bands packed with a high concentration of rhodopsin were very rigid, which made them more susceptible to breakage than low-density bands consisting of less rhodopsin. Their model confirmed their experimental results and revealed factors that determine the critical force needed to break the outer segment.

The findings support the idea that mutations causing rhodopsin to aggregate can destabilize the outer segment, eventually causing blindness. "Further refinement of the model could lead to novel ways to stabilize the outer segment and could delay the onset of blindness," says Ahmadi.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mohammad Haeri, BarryE. Knox, Aphrodite Ahmadi. Modeling the Flexural Rigidity of Rod Photoreceptors. Biophysical Journal, 2013; 104 (2): 300 DOI: 10.1016/j.bpj.2012.11.3835

Cite This Page:

Cell Press. "Study of how eye cells become damaged could help prevent blindness." ScienceDaily. ScienceDaily, 22 January 2013. <www.sciencedaily.com/releases/2013/01/130122122403.htm>.
Cell Press. (2013, January 22). Study of how eye cells become damaged could help prevent blindness. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/01/130122122403.htm
Cell Press. "Study of how eye cells become damaged could help prevent blindness." ScienceDaily. www.sciencedaily.com/releases/2013/01/130122122403.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins