Featured Research

from universities, journals, and other organizations

Self-assembling silica microwires may herald new generation of integrated optical devices

Date:
January 23, 2013
Source:
Optical Society of America
Summary:
Silica microwires are the tiny and as yet underutilized cousins of optical fibers. If precisely manufactured, however, these hair-like slivers of silica could enable applications and technology not currently possible with comparatively bulky optical fiber. By carefully controlling the shape of water droplets with an ultraviolet laser, a team of researchers has found a way to coax silica nanoparticles to self-assemble into much more highly uniform silica wires.

These scanning electron microscope images reveal how UV laser light changes the surface texture and wettability of glass.Figures (a) and (b) reveal subtle texturing after lower-energy exposure to laser light. These textures made the surfaces more hydrophilic in (a) and more hydrophobic (water repellent) in (b). Higher energies produced a rougher and even more hydrophilic (wettable) (c) and (d) close-up of (c), surface.
Credit: Optical Materials Express

Silica microwires are the tiny and as-yet underutilized cousins of optical fibers. If precisely manufactured, however, these hair-like slivers of silica could enable applications and technology not currently possible with comparatively bulky optical fiber. By carefully controlling the shape of water droplets with an ultraviolet laser, a team of researchers from Australia and France has found a way to coax silica nanoparticles to self-assemble into much more highly uniform silica wires.

The international team describes their novel manufacturing technique and its potential applications in a paper published January 23 in the Optical Society's (OSA) open-access journal Optics Materials Express. This technique is particularly significant, according to the researchers, because it could, for the first time, enable silica to be combined with any material through a process of microwire self-assembly.

"We're currently living in the 'Glass Age,' based upon silica, which enables the Internet," says John Canning, team member and a professor in the school of chemistry at The University of Sydney in Australia. "Silica's high thermal processing, ruggedness, and unbeatable optical transparency over long distances equate to unprecedented capacity to transmit data and information all over the world."

Silica, however, is normally incompatible with most other materials so functionalizing silica (giving it the capability) to do more than just carry light has been a challenge. Further, bridging the gap between the light-speed transmission of data through silica and electronic and photonic components -- such as optical switches, optical circuits, photon sources, and even sensors -- requires some form of interconnect. But this transition is highly inefficient using optical fibers and interconnection losses remain one of the largest unresolved issues in optical communications.

Silica microwires, if they could be manufactured or self-assembled in place, have the potential to operate as optical interconnects. They also could achieve new functionality by adding different chemicals that can only be introduced by self-assembly.

Silica wires, unlike optical fiber, have no cladding, which means greater confinement of light in a smaller structure better suited for interconnection, further minimizing losses and physical space. "So we were motivated to solve the great silica incompatibility problem," explains Canning.

To this end, the researchers came up with the idea of using evaporative self-assembly of silica nanoparticles at room temperature. They recently reported this breakthrough in the journal Nature Communications, demonstrating single-photon-emitting nanodiamonds embedded in silica, which is a first step toward a practical photon source for future quantum computing.

The key to carrying this innovation further, as described in their new research, is perfecting the manufacturing process so highly uniform wires self-assemble from nanoparticles suspended in a solution. The challenge has been that as naturally forming round droplets evaporate, they produce very uneven silica microwires. This is due to the microfluidic currents inside the droplet, which corral the nanoparticles into specific patterns aided and held together by intermolecular attractive forces. The nanoparticles then crystalize when the solvent (water) evaporates.

Canning and his team realized that by changing the shape of the droplet and elongating it ever so slightly, they could concurrently change the flow patterns inside the drop, controlling how the nanoparticles assemble.

The researchers did this by changing the "wettability" properties of the glass the drops were resting upon. The team used an ultraviolet laser to alter and pattern a glass made of the mineral borosilicate. This patterning made the surface more wettable in a very controlled way, allowing the droplet to assume a slightly more oblong shape. This subtle shape change was enough to alter the microscopic flows and eddies so as the water evaporated, the silica formed straighter, more uniform microwires.

The researchers anticipate that their processing technology will allow complete control of nanoparticle self-assembly for various technologies, including microwire devices and sensors, photon sources, and possibly silica-based integrated circuits.

It also will enable the production of selective devices such as chemical and biological sensors, photovoltaic structures, and novel switches in both optical fiber form and on waveguides -- all of which could lead to technologies that seamlessly integrate microfluidic, electronic, quantum, and photonic functionality.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. John Canning, Hadrien Weil, Masood Naqshbandi, Kevin Cook, and Matthieu Lancry. Laser tailoring surface interactions, contact angles, drop topologies and the self-assembly of optical microwires. Opt. Mater. Express, 3, 284-294 (2013) [link]

Cite This Page:

Optical Society of America. "Self-assembling silica microwires may herald new generation of integrated optical devices." ScienceDaily. ScienceDaily, 23 January 2013. <www.sciencedaily.com/releases/2013/01/130123101607.htm>.
Optical Society of America. (2013, January 23). Self-assembling silica microwires may herald new generation of integrated optical devices. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/01/130123101607.htm
Optical Society of America. "Self-assembling silica microwires may herald new generation of integrated optical devices." ScienceDaily. www.sciencedaily.com/releases/2013/01/130123101607.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

Reuters - Innovations Video Online (Oct. 16, 2014) Japanese researcher uses an eye-sensor camera to enable a bipedal robot to balance itself, while running on a treadmill. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Lockheed Martin's Fusion Concept Basically An Advertisement

Lockheed Martin's Fusion Concept Basically An Advertisement

Newsy (Oct. 15, 2014) Lockheed Martin announced plans to develop the first-ever compact nuclear fusion reactor. But some experts said the excitement is a little premature. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com
Science Proves Why Pizza Is So Delicious

Science Proves Why Pizza Is So Delicious

Buzz60 (Oct. 15, 2014) The American Chemical Society’s latest video about chemistry in every day life breaks down pizza, and explains exactly why it's so delicious. Gillian Pensavalle (@GillianWithaG) has the video. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins