Featured Research

from universities, journals, and other organizations

Retrovirus in the human genome is active in pluripotent stem cells

Date:
January 23, 2013
Source:
University of Massachusetts Medical School
Summary:
A retrovirus called HERV-H, which inserted itself into the human genome millions of years ago, may play an important role in pluripotent stem cells. The discovery, which may help explain how these cells maintain a state of pluripotency and are able to differentiate into many types of cells, could have profound implications for therapies that would use pluripotent stem cells to treat a range of human diseases.

A retrovirus called HERV-H, which inserted itself into the human genome millions of years ago, may play an important role in pluripotent stem cells, according to a new study published in the journal Retrovirology by scientists at UMass Medical School. Pluripotent stem cells are capable of generating all tissue types, including blood cells, brain cells and heart cells. The discovery, which may help explain how these cells maintain a state of pluripotency and are able to differentiate into many types of cells, could have profound implications for therapies that would use pluripotent stem cells to treat a range of human diseases.

Related Articles


"What we've observed is that a group of endogenous retroviruses called HERV-H is extremely busy in human embryonic stem cells," said Jeremy Luban, MD, the David L. Freelander Memorial Professor in HIV/AIDS Research, professor of molecular medicine and lead author of the study. "In fact, HERV-H is one of the most abundantly expressed genes in pluripotent stem cells and it isn't found in any other cell types."

In the study, Dr. Luban and colleagues describe how RNA from the HERV-H sequence makes up as much as 2 percent of the total RNA found in pluripotent stem cells. The HERV-H sequence is controlled by the same factors that are used to reprogram skin cells into induced pluripotent stem (iPS) cells, a discovery that garnered the 2012 Nobel Prize in Physiology or Medicine. "In other words, HERV-H is a new marker for pluripotency in humans that has the potential to aid in the development of iPS cells and transform current stem cell technology," said Luban.

When a retrovirus infects a cell, it inserts its own genes into the chromosomal DNA of the host cell. As a result, the host cell treats the viral genome as part of its own DNA sequence and begins making the proteins required to assemble new copies of the virus. And because the retrovirus is now part of the host cell's genome, when the cell divides, the virus is inherited by all daughter cells.

In rare cases, it's believed that retroviruses can infect human sperm or egg cells. If this happens, and if the resulting embryo survives, the retrovirus can become a permanent part of the human genome, and be passed down from generation to generation. Scientists estimate that as much as 8 percent of the human genome may be composed of extinct retroviruses left over from infections that occurred millions of years ago. Yet these sequences of fossilized retrovirus were thought to have no discernible functional value.

"The human genome is filled with retrovirus DNA thought to be no more than fossilized junk," said Luban. "Increasingly, there are indications that these sequences might not be junk. They might play a role in gene expression after all."

An expert in HIV and other retroviruses, Luban and his colleagues were seeking to understand if there was a rationale behind where, in the expansive human genome, retroviruses inserted themselves. Knowing where along the chromosomal DNA retroviruses might attack could potentially lead to the development of drugs that protect against infection; better gene therapy treatments; or novel biomarkers that would predict where a retrovirus would insert itself in the genome, said Luban.

Turning these same techniques on the retrovirus sequences already in the human genome, they discovered a sequence, HERV-H, that appeared to be active. "The sequences weren't making proteins because they had been so disrupted over millions of years, but they were making these long, noncoding RNAs," said Luban.

Specifically, the HERV-H sequence was making abundant amounts of RNA in human embryonic stem cells -- and only stem cells. In total, there are more than 1,000 HERV-H retrovirus genomes scattered throughout the human genome. The Luban lab also found high levels of HERV-H RNA in some iPS cells. Other iPS cells, perhaps those lines that were not sufficiently reprogrammed to pluripotency, had lower levels of the HERV-H RNA, another indication that HERV-H may be an important marker for pluripotency.

Interestingly, the HERV-H genes that were expressed in human pluripotent stem cells are only found in the human and chimpanzee genomes, indicating that HERV-H infected a relatively recent ancestor to humans, said Luban.

"Once upon a time HERV-H was an invader to our genome and perhaps caused diseases like AIDS or cancer," said Luban. "Now it seems that a kind of dιtente has been reached. Not only that, but this ancient invader may one day be exploited by clinicians to cure people of a wide range of diseases using stem cell therapies."

Luban and colleagues will next try to determine the specific mechanisms by which HERV-H contributes to pluripotency.


Story Source:

The above story is based on materials provided by University of Massachusetts Medical School. Note: Materials may be edited for content and length.


Journal Reference:

  1. Federico A Santoni, Jessica Guerra, Jeremy Luban. HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology, 2012; 9 (1): 111 DOI: 10.1186/1742-4690-9-111

Cite This Page:

University of Massachusetts Medical School. "Retrovirus in the human genome is active in pluripotent stem cells." ScienceDaily. ScienceDaily, 23 January 2013. <www.sciencedaily.com/releases/2013/01/130123133930.htm>.
University of Massachusetts Medical School. (2013, January 23). Retrovirus in the human genome is active in pluripotent stem cells. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2013/01/130123133930.htm
University of Massachusetts Medical School. "Retrovirus in the human genome is active in pluripotent stem cells." ScienceDaily. www.sciencedaily.com/releases/2013/01/130123133930.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins